alberto
commited on
Commit
·
7e1bf0b
1
Parent(s):
0d0af81
tool improvement, smaller model
Browse files- app.py +16 -23
- requirements.txt +1 -0
- system_prompt.txt +3 -7
- tools.py +125 -24
app.py
CHANGED
|
@@ -4,15 +4,12 @@ import requests
|
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
from smolagents import (
|
| 7 |
-
VisitWebpageTool,
|
| 8 |
DuckDuckGoSearchTool,
|
| 9 |
-
WikipediaSearchTool,
|
| 10 |
PythonInterpreterTool,
|
| 11 |
FinalAnswerTool,
|
| 12 |
-
TransformersModel,
|
| 13 |
InferenceClientModel)
|
| 14 |
from smolagents.agents import CodeAgent
|
| 15 |
-
from tools import
|
| 16 |
from utils import QuestionLoader
|
| 17 |
|
| 18 |
with open('system_prompt.txt', 'r') as file:
|
|
@@ -23,18 +20,26 @@ with open('system_prompt.txt', 'r') as file:
|
|
| 23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 24 |
|
| 25 |
# Models
|
| 26 |
-
MODEL = InferenceClientModel("Qwen/Qwen3-VL-30B-A3B-Instruct")
|
|
|
|
| 27 |
|
| 28 |
# --- Basic Agent Definition ---
|
| 29 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 30 |
class BasicAgent:
|
| 31 |
def __init__(self):
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
|
|
@@ -61,18 +66,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 61 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 62 |
try:
|
| 63 |
agent = BasicAgent()
|
| 64 |
-
agent = CodeAgent(
|
| 65 |
-
model=MODEL,
|
| 66 |
-
max_steps=10,
|
| 67 |
-
tools=[
|
| 68 |
-
DuckDuckGoSearchTool(),
|
| 69 |
-
WikipediaSearchTool(),
|
| 70 |
-
VisitWebpageTool(),
|
| 71 |
-
VisitWikiPageTool(user_agent="hf-agent-course"),
|
| 72 |
-
SpeechToTextTool(),
|
| 73 |
-
PythonInterpreterTool(),
|
| 74 |
-
FinalAnswerTool()])
|
| 75 |
-
agent.prompt_templates["system_prompt"] = system_prompt
|
| 76 |
except Exception as e:
|
| 77 |
print(f"Error instantiating agent: {e}")
|
| 78 |
return f"Error initializing agent: {e}", None
|
|
|
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
from smolagents import (
|
|
|
|
| 7 |
DuckDuckGoSearchTool,
|
|
|
|
| 8 |
PythonInterpreterTool,
|
| 9 |
FinalAnswerTool,
|
|
|
|
| 10 |
InferenceClientModel)
|
| 11 |
from smolagents.agents import CodeAgent
|
| 12 |
+
from tools import VisitWebpageTool, SpeechToTextTool
|
| 13 |
from utils import QuestionLoader
|
| 14 |
|
| 15 |
with open('system_prompt.txt', 'r') as file:
|
|
|
|
| 20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 21 |
|
| 22 |
# Models
|
| 23 |
+
#MODEL = InferenceClientModel("Qwen/Qwen3-VL-30B-A3B-Instruct")
|
| 24 |
+
MODEL = InferenceClientModel("Qwen/Qwen3-VL-7B-Instruct")
|
| 25 |
|
| 26 |
# --- Basic Agent Definition ---
|
| 27 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 28 |
class BasicAgent:
|
| 29 |
def __init__(self):
|
| 30 |
+
self.agent = CodeAgent(
|
| 31 |
+
model=MODEL,
|
| 32 |
+
max_steps=10,
|
| 33 |
+
tools=[
|
| 34 |
+
DuckDuckGoSearchTool(),
|
| 35 |
+
VisitWebpageTool(),
|
| 36 |
+
SpeechToTextTool(),
|
| 37 |
+
PythonInterpreterTool(),
|
| 38 |
+
FinalAnswerTool()])
|
| 39 |
+
self.agent.prompt_templates["system_prompt"] = system_prompt
|
| 40 |
+
|
| 41 |
+
def run(self, **kwargs) -> str:
|
| 42 |
+
return self.agent.run(**kwargs)
|
| 43 |
|
| 44 |
|
| 45 |
|
|
|
|
| 66 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 67 |
try:
|
| 68 |
agent = BasicAgent()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
except Exception as e:
|
| 70 |
print(f"Error instantiating agent: {e}")
|
| 71 |
return f"Error initializing agent: {e}", None
|
requirements.txt
CHANGED
|
@@ -13,3 +13,4 @@ pandas
|
|
| 13 |
torch==2.9
|
| 14 |
torchaudio
|
| 15 |
torchcodec
|
|
|
|
|
|
| 13 |
torch==2.9
|
| 14 |
torchaudio
|
| 15 |
torchcodec
|
| 16 |
+
markdown-it-py==4.0.0
|
system_prompt.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
You are an expert assistant who can solve any task
|
| 2 |
To do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.
|
| 3 |
To solve the task, you must plan forward to proceed in a series of steps, in a cycle of Thought, Code, and Observation sequences.
|
| 4 |
|
|
@@ -172,13 +172,9 @@ specified otherwise.
|
|
| 172 |
15. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in
|
| 173 |
the list is a number or a string.
|
| 174 |
16. Skip questions related to youtube videos since you do not have the tools to answer. Just answer 'Skip' in such cases.
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
Here are suggestions, these are not rules, so you may decide to not follow them, however, they can make solving tasks easier:
|
| 177 |
-
1. Some questions are related to a file, use the 'get_question_file' tool to retrieve the question's file content.
|
| 178 |
-
2. The 'wikipedia_search' tool often returns incomplete results and is not able to parse tables. In order to get the full content of a wikipedia pages
|
| 179 |
-
you should rely on the 'visit_wikipage' tool.
|
| 180 |
-
3. To visit wikipedia pages you should use the 'visit_wikipage' tool and NOT the generic 'visit_webpage' tool since the latter won't work.
|
| 181 |
-
4. Instead of using regex or code instruction to extract information from text it you are often better of relying on your own text understading capabilities.
|
| 182 |
|
| 183 |
{%- if custom_instructions %}
|
| 184 |
{{custom_instructions}}
|
|
|
|
| 1 |
+
You are an expert assistant who can solve any task. You will be given a task to solve as best you can, you can also use code if you need to.
|
| 2 |
To do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.
|
| 3 |
To solve the task, you must plan forward to proceed in a series of steps, in a cycle of Thought, Code, and Observation sequences.
|
| 4 |
|
|
|
|
| 172 |
15. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in
|
| 173 |
the list is a number or a string.
|
| 174 |
16. Skip questions related to youtube videos since you do not have the tools to answer. Just answer 'Skip' in such cases.
|
| 175 |
+
17. Wikipedia is your first to go website for facts and information retrieval.
|
| 176 |
+
18. Don't over-use or over-rely on code to solve taks, use it when necessary.
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
{%- if custom_instructions %}
|
| 180 |
{{custom_instructions}}
|
tools.py
CHANGED
|
@@ -1,39 +1,51 @@
|
|
| 1 |
from typing import Dict
|
| 2 |
from transformers import pipeline
|
|
|
|
| 3 |
from smolagents.tools import Tool
|
| 4 |
import torchcodec
|
| 5 |
|
| 6 |
|
| 7 |
-
class
|
| 8 |
-
name = "
|
| 9 |
description = (
|
| 10 |
-
"Visits a
|
| 11 |
)
|
| 12 |
inputs = {
|
| 13 |
"url": {
|
| 14 |
"type": "string",
|
| 15 |
"description": "The url of the webpage to visit.",
|
| 16 |
},
|
| 17 |
-
"max_length": {
|
| 18 |
-
"type": "integer",
|
| 19 |
-
"description": "Maximum number of characters to include in the response. Default 40000.",
|
| 20 |
-
"nullable": True
|
| 21 |
-
}
|
| 22 |
}
|
| 23 |
output_type = "string"
|
| 24 |
|
| 25 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
super().__init__()
|
|
|
|
| 27 |
self.headers = {"User-Agent": user_agent}
|
| 28 |
|
| 29 |
-
def _truncate_content(self, content: str, max_length: int) -> str:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
import re
|
| 39 |
import requests
|
|
@@ -50,11 +62,16 @@ class VisitWikiPageTool(Tool):
|
|
| 50 |
|
| 51 |
# Convert the HTML content to Markdown
|
| 52 |
markdown_content = markdownify(response.text).strip()
|
| 53 |
-
|
| 54 |
# Remove multiple line breaks
|
| 55 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
except requests.exceptions.Timeout:
|
| 59 |
return "The request timed out. Please try again later or check the URL."
|
| 60 |
except RequestException as e:
|
|
@@ -62,6 +79,7 @@ class VisitWikiPageTool(Tool):
|
|
| 62 |
except Exception as e:
|
| 63 |
return f"An unexpected error occurred: {str(e)}"
|
| 64 |
|
|
|
|
| 65 |
class SpeechToTextTool(Tool):
|
| 66 |
name = "transcriber"
|
| 67 |
description = "This is a tool that transcribes an audio into text. It returns the transcribed text."
|
|
@@ -107,8 +125,91 @@ class SpeechToTextTool(Tool):
|
|
| 107 |
self.pipe = pipeline("automatic-speech-recognition", model=model)
|
| 108 |
|
| 109 |
def forward(self, audio_file: str, sample_rate: int=16000) -> str:
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import Dict
|
| 2 |
from transformers import pipeline
|
| 3 |
+
from markdown_it import MarkdownIt
|
| 4 |
from smolagents.tools import Tool
|
| 5 |
import torchcodec
|
| 6 |
|
| 7 |
|
| 8 |
+
class VisitWebpageTool(Tool):
|
| 9 |
+
name = "visit_webpage"
|
| 10 |
description = (
|
| 11 |
+
"Visits a web page at the given url and reads its content as a markdown string and store it to a file"
|
| 12 |
)
|
| 13 |
inputs = {
|
| 14 |
"url": {
|
| 15 |
"type": "string",
|
| 16 |
"description": "The url of the webpage to visit.",
|
| 17 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
}
|
| 19 |
output_type = "string"
|
| 20 |
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
file_name: str = "web_content.md",
|
| 24 |
+
user_agent: str = "agent-course"
|
| 25 |
+
):
|
| 26 |
super().__init__()
|
| 27 |
+
self.file_name = file_name
|
| 28 |
self.headers = {"User-Agent": user_agent}
|
| 29 |
|
| 30 |
+
#def _truncate_content(self, content: str, max_length: int) -> str:
|
| 31 |
+
# if len(content) <= max_length:
|
| 32 |
+
# return content
|
| 33 |
+
# return (
|
| 34 |
+
# content[:max_length] + f"\n..._This content has been truncated to stay below {max_length} characters_...\n"
|
| 35 |
+
# )
|
| 36 |
|
| 37 |
+
def _inspect(self, doc: str) -> str:
|
| 38 |
+
mdit = MarkdownIt()
|
| 39 |
+
tokens = mdit.parse(doc)
|
| 40 |
+
content_table = ""
|
| 41 |
+
for token in tokens:
|
| 42 |
+
if token.type == "heading_open":
|
| 43 |
+
level = int(token.tag[-1]) - 1
|
| 44 |
+
text = token.map and tokens[tokens.index(token) + 1].content
|
| 45 |
+
content_table += " " * level + text + "\n"
|
| 46 |
+
return content_table
|
| 47 |
+
|
| 48 |
+
def forward(self, url: str) -> str:
|
| 49 |
try:
|
| 50 |
import re
|
| 51 |
import requests
|
|
|
|
| 62 |
|
| 63 |
# Convert the HTML content to Markdown
|
| 64 |
markdown_content = markdownify(response.text).strip()
|
| 65 |
+
|
| 66 |
# Remove multiple line breaks
|
| 67 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
| 68 |
+
with open(self.file_name, "w") as f:
|
| 69 |
+
f.write(markdown_content)
|
| 70 |
+
try:
|
| 71 |
+
content_summary = self._inspect(markdown_content)
|
| 72 |
+
return f"Web page content saved in '{self.file_name}'. The content has the following section tree:\n {content_summary}. To read the full website content you can call 'read_mddoc('web_content.md')'"
|
| 73 |
+
except Exception:
|
| 74 |
+
return f"Web page content saved in {self.file_name}."
|
| 75 |
except requests.exceptions.Timeout:
|
| 76 |
return "The request timed out. Please try again later or check the URL."
|
| 77 |
except RequestException as e:
|
|
|
|
| 79 |
except Exception as e:
|
| 80 |
return f"An unexpected error occurred: {str(e)}"
|
| 81 |
|
| 82 |
+
|
| 83 |
class SpeechToTextTool(Tool):
|
| 84 |
name = "transcriber"
|
| 85 |
description = "This is a tool that transcribes an audio into text. It returns the transcribed text."
|
|
|
|
| 125 |
self.pipe = pipeline("automatic-speech-recognition", model=model)
|
| 126 |
|
| 127 |
def forward(self, audio_file: str, sample_rate: int=16000) -> str:
|
| 128 |
+
try:
|
| 129 |
+
sample_rate = sample_rate if sample_rate is not None else 16000
|
| 130 |
+
with open(audio_file, "rb") as f:
|
| 131 |
+
decoder = torchcodec.decoders.AudioDecoder(f, sample_rate=sample_rate)
|
| 132 |
+
audio_length = decoder.get_all_samples().data.shape[1]
|
| 133 |
+
out = self.pipe(decoder)
|
| 134 |
+
return out["text"]
|
| 135 |
+
except ValueError as e:
|
| 136 |
+
max_length = 300000
|
| 137 |
+
suggest_sample_rate = int(sample_rate * max_length/audio_length)
|
| 138 |
+
return f"The audio file to transcribe is too long, number of samples {audio_length}. You used a sample_rate of {sample_rate}, try using a smaller sample rate, like {suggest_sample_rate}"
|
| 139 |
+
except Exception as e:
|
| 140 |
+
raise e
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class ReadMdDoc(Tool):
|
| 144 |
+
name = "read_mddoc"
|
| 145 |
+
description = (
|
| 146 |
+
"Read an entire markdown file or a specific section of it."
|
| 147 |
+
)
|
| 148 |
+
inputs = {
|
| 149 |
+
"file_name": {
|
| 150 |
+
"type": "string",
|
| 151 |
+
"description": "The file to read it should have 'md' extension.",
|
| 152 |
+
},
|
| 153 |
+
"section": {
|
| 154 |
+
"type": "string",
|
| 155 |
+
"nullable": True,
|
| 156 |
+
"description": "If you want to read the entire file set this to 'all'. Otherwise you can look for a specific section title."
|
| 157 |
+
},
|
| 158 |
+
"max_length":{
|
| 159 |
+
"type": "integer",
|
| 160 |
+
"nullable": True,
|
| 161 |
+
"description": "The maximum number of characters to return if the content has more characters it will be truncated. Use 40000 as a default."
|
| 162 |
+
}
|
| 163 |
+
}
|
| 164 |
+
output_type = "string"
|
| 165 |
+
|
| 166 |
+
def __init__(self):
|
| 167 |
+
super().__init__()
|
| 168 |
+
|
| 169 |
+
def _truncate_content(self, content: str, max_length: int) -> str:
|
| 170 |
+
if len(content) <= max_length:
|
| 171 |
+
return content
|
| 172 |
+
return (
|
| 173 |
+
content[:max_length] + f"\n..._This content has been truncated to stay below {max_length} characters_...\n Does it have the information you need otherwise increase the max_length."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
def get_token_map(self, tokens):
|
| 177 |
+
token_map = defaultdict(list)
|
| 178 |
+
stack = []
|
| 179 |
+
for i, token in enumerate(tokens):
|
| 180 |
+
if token.type == "heading_open":
|
| 181 |
+
text = token.map and tokens[tokens.index(token) + 1].content
|
| 182 |
+
token_map[text].append(i)
|
| 183 |
+
level = int(token.tag[-1])
|
| 184 |
+
while stack and level <= stack[-1][-1]:
|
| 185 |
+
key, _ = stack.pop()
|
| 186 |
+
token_map[key].append(i)
|
| 187 |
+
stack.append((text, level))
|
| 188 |
+
while stack:
|
| 189 |
+
text, _ = stack.pop()
|
| 190 |
+
token_map[text].append(i)
|
| 191 |
+
return token_map
|
| 192 |
+
|
| 193 |
+
def forward(
|
| 194 |
+
self,
|
| 195 |
+
file_name: str,
|
| 196 |
+
section: str = "all",
|
| 197 |
+
max_length: int = 40000):
|
| 198 |
+
try:
|
| 199 |
+
with open(file_name, "r") as f:
|
| 200 |
+
doc = f.read()
|
| 201 |
+
except FileNotFoundError:
|
| 202 |
+
return f"Can't find {file_name}, are you sure the file exists and that you have spelled it crrectly?"
|
| 203 |
+
try:
|
| 204 |
+
mdit = MarkdownIt()
|
| 205 |
+
tokens = mdit.parse(doc)
|
| 206 |
+
except Exception:
|
| 207 |
+
return "Error using the markdown parser, are you sure the file is in markdown format?"
|
| 208 |
+
token_map = self.get_token_map(tokens)
|
| 209 |
+
token_map["all"] = [0, len(tokens)]
|
| 210 |
+
if section in token_map:
|
| 211 |
+
start, end = tuple(token_map[section])
|
| 212 |
+
content = "\n".join([t.content for t in tokens[start:end]])
|
| 213 |
+
return self._truncate_content(content, max_length)
|
| 214 |
+
else:
|
| 215 |
+
return f"The required Section is not found in the document. The available sections are:\n {list(token_map.keys())}. If you don't see what you are looking for here, you can try returning all the document using setting argument section to 'all'"
|