Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import torch
|
| 3 |
+
import re
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
|
| 7 |
+
if torch.cuda.is_available():
|
| 8 |
+
device, dtype = "cuda", torch.float16
|
| 9 |
+
else:
|
| 10 |
+
device, dtype = "cpu", torch.float32
|
| 11 |
+
|
| 12 |
+
model_id = "vikhyatk/moondream2"
|
| 13 |
+
revision = "2024-04-02"
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
| 15 |
+
moondream = AutoModelForCausalLM.from_pretrained(
|
| 16 |
+
model_id, trust_remote_code=True, revision=revision
|
| 17 |
+
).to(device=device, dtype=dtype)
|
| 18 |
+
moondream.eval()
|
| 19 |
+
|
| 20 |
+
@spaces.GPU(duration=10)
|
| 21 |
+
def answer_questions(images, prompt_text):
|
| 22 |
+
prompts = [p.strip() for p in prompt_text.split(',')] # Splitting and cleaning prompts
|
| 23 |
+
image_embeds = [moondream.encode_image(img) for img in images]
|
| 24 |
+
answers = moondream.batch_answer(
|
| 25 |
+
images=image_embeds,
|
| 26 |
+
prompts=prompts,
|
| 27 |
+
tokenizer=tokenizer,
|
| 28 |
+
)
|
| 29 |
+
return ["\n".join(ans) for ans in answers]
|
| 30 |
+
|
| 31 |
+
with gr.Blocks() as demo:
|
| 32 |
+
gr.Markdown("# π moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)")
|
| 33 |
+
with gr.Row():
|
| 34 |
+
img = gr.Gallery(label="Upload Images", type="pil")
|
| 35 |
+
prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts separated by commas. Ex: Describe this image, What is in this image?", lines=2)
|
| 36 |
+
submit = gr.Button("Submit")
|
| 37 |
+
output = gr.TextArea(label="Responses", lines=4)
|
| 38 |
+
submit.click(answer_questions, [img, prompt], output)
|
| 39 |
+
|
| 40 |
+
demo.queue().launch()
|