Update app.py
Browse files
app.py
CHANGED
|
@@ -6,20 +6,60 @@ from threading import Thread
|
|
| 6 |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
| 7 |
from PIL import ImageDraw
|
| 8 |
from torchvision.transforms.v2 import Resize
|
| 9 |
-
#import subprocess
|
| 10 |
|
| 11 |
-
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
#model_id = "vikhyatk/moondream2"
|
| 18 |
#revision = "2025-01-09"
|
| 19 |
|
| 20 |
#def load_moondream():
|
| 21 |
-
#
|
| 22 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
# "vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
|
| 24 |
# )
|
| 25 |
# tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
|
@@ -33,14 +73,13 @@ from torchvision.transforms.v2 import Resize
|
|
| 33 |
|
| 34 |
#moondream.eval()
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
device_map={"": "cuda"},
|
| 42 |
)
|
| 43 |
-
|
| 44 |
|
| 45 |
@spaces.GPU(durtion="150")
|
| 46 |
def answer_questions(image_tuples, prompt_text):
|
|
@@ -68,6 +107,18 @@ def answer_questions(image_tuples, prompt_text):
|
|
| 68 |
#print("result\n{}\n\nQ_and_A\n{}\n\n".format(result, Q_and_A))
|
| 69 |
return Q_and_A, result
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
with gr.Blocks() as demo:
|
| 72 |
gr.Markdown("# moondream2 unofficial batch processing demo")
|
| 73 |
gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n")
|
|
|
|
| 6 |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
| 7 |
from PIL import ImageDraw
|
| 8 |
from torchvision.transforms.v2 import Resize
|
|
|
|
| 9 |
|
| 10 |
+
from transformers import AutoModelForCausalLM
|
| 11 |
|
| 12 |
+
moondream = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
"moondream/moondream3-preview",
|
| 14 |
+
trust_remote_code=True,
|
| 15 |
+
dtype=torch.bfloat16,
|
| 16 |
+
device_map={"": "cuda"},
|
| 17 |
+
)
|
| 18 |
+
moondream.compile()
|
| 19 |
+
|
| 20 |
+
# Encode image once
|
| 21 |
+
image = Image.open("complex_scene.jpg")
|
| 22 |
+
encoded = moondream.encode_image(image)
|
| 23 |
+
|
| 24 |
+
# Reuse the encoding for multiple queries
|
| 25 |
+
questions = [
|
| 26 |
+
"How many people are in this image?",
|
| 27 |
+
"What time of day was this taken?",
|
| 28 |
+
"What's the weather like?"
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
for q in questions:
|
| 32 |
+
result = moondream.query(image=encoded, question=q, reasoning=False)
|
| 33 |
+
print(f"Q: {q}")
|
| 34 |
+
print(f"A: {result['answer']}\n")
|
| 35 |
+
|
| 36 |
+
# Also works with other skills
|
| 37 |
+
caption = moondream.caption(encoded, length="normal")
|
| 38 |
+
objects = moondream.detect(encoded, "poop")
|
| 39 |
+
pointe = moondream.point(encoded, "grass")
|
| 40 |
+
print(f"caption: {e}, objects:{g}, point:{h}")
|
| 41 |
|
| 42 |
+
# Segment an object
|
| 43 |
+
result = moondream.segment(image, "cat")
|
| 44 |
+
svg_path = result["path"]
|
| 45 |
+
bbox = result["bbox"]
|
| 46 |
|
| 47 |
+
print(f"SVG Path: {svg_path[:100]}...")
|
| 48 |
+
print(f"Bounding box: {bbox}")
|
| 49 |
+
|
| 50 |
+
# With spatial hint (point) to guide segmentation
|
| 51 |
+
result = model.segment(image, "cat", spatial_refs=[[0.5, 0.3]])
|
| 52 |
+
|
| 53 |
+
# With spatial hint (bounding box)
|
| 54 |
+
result = model.segment(image, "cat", spatial_refs=[[0.2, 0.1, 0.8, 0.9]])
|
| 55 |
+
|
| 56 |
+
"""
|
| 57 |
#model_id = "vikhyatk/moondream2"
|
| 58 |
#revision = "2025-01-09"
|
| 59 |
|
| 60 |
#def load_moondream():
|
| 61 |
+
# Load Moondream model and tokenizer.
|
| 62 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
| 63 |
# "vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
|
| 64 |
# )
|
| 65 |
# tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
|
|
|
| 73 |
|
| 74 |
#moondream.eval()
|
| 75 |
|
| 76 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 77 |
+
"vikhyatk/moondream2",
|
| 78 |
+
trust_remote_code=True,
|
| 79 |
+
dtype=torch.bfloat16,
|
| 80 |
+
device_map="cuda", # "cuda" on Nvidia GPUs
|
|
|
|
| 81 |
)
|
| 82 |
+
"""
|
| 83 |
|
| 84 |
@spaces.GPU(durtion="150")
|
| 85 |
def answer_questions(image_tuples, prompt_text):
|
|
|
|
| 107 |
#print("result\n{}\n\nQ_and_A\n{}\n\n".format(result, Q_and_A))
|
| 108 |
return Q_and_A, result
|
| 109 |
|
| 110 |
+
"""
|
| 111 |
+
Load Moondream model and tokenizer.
|
| 112 |
+
moondream = AutoModelForCausalLM.from_pretrained(
|
| 113 |
+
"vikhyatk/moondream2",
|
| 114 |
+
revision="2025-01-09",
|
| 115 |
+
trust_remote_code=True,
|
| 116 |
+
device_map={"": "cuda"},
|
| 117 |
+
)
|
| 118 |
+
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
|
| 122 |
with gr.Blocks() as demo:
|
| 123 |
gr.Markdown("# moondream2 unofficial batch processing demo")
|
| 124 |
gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n")
|