Spaces:
Sleeping
Sleeping
| from model import build_transformer | |
| from dataset import BilingualDataset, causal_mask | |
| from config import get_config, get_weights_file_path, latest_weights_file_path | |
| # import torchtext.datasets as datasets | |
| import torch | |
| import torch.nn as nn | |
| from torch.utils.data import Dataset, DataLoader, random_split | |
| from torch.optim.lr_scheduler import LambdaLR | |
| import warnings | |
| from tqdm import tqdm | |
| import os | |
| from pathlib import Path | |
| # Huggingface datasets and tokenizers | |
| from datasets import load_dataset | |
| from tokenizers import Tokenizer | |
| from tokenizers.models import WordLevel | |
| from tokenizers.trainers import WordLevelTrainer | |
| from tokenizers.pre_tokenizers import Whitespace | |
| # import torchmetrics | |
| # from torch.utils.tensorboard import SummaryWriter | |
| def greedy_decode(model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device): | |
| sos_idx = tokenizer_tgt.token_to_id('[SOS]') | |
| eos_idx = tokenizer_tgt.token_to_id('[EOS]') | |
| # Precompute the encoder output and reuse it for every step | |
| encoder_output = model.encode(source, source_mask) | |
| # Initialize the decoder input with the sos token | |
| decoder_input = torch.empty(1, 1).fill_(sos_idx).type_as(source).to(device) | |
| while True: | |
| if decoder_input.size(1) == max_len: | |
| break | |
| # build mask for target | |
| decoder_mask = causal_mask(decoder_input.size(1)).type_as(source_mask).to(device) | |
| # calculate output | |
| out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask) | |
| # get next token | |
| prob = model.project(out[:, -1]) | |
| _, next_word = torch.max(prob, dim=1) | |
| decoder_input = torch.cat( | |
| [decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1 | |
| ) | |
| if next_word == eos_idx: | |
| break | |
| return decoder_input.squeeze(0) | |
| def run_validation(model, validation_ds, tokenizer_src, tokenizer_tgt, max_len, device, print_msg, global_step, writer=None, num_examples=2): | |
| model.eval() | |
| count = 0 | |
| source_texts = [] | |
| expected = [] | |
| predicted = [] | |
| try: | |
| # get the console window width | |
| with os.popen('stty size', 'r') as console: | |
| _, console_width = console.read().split() | |
| console_width = int(console_width) | |
| except: | |
| # If we can't get the console width, use 80 as default | |
| console_width = 80 | |
| with torch.no_grad(): | |
| for batch in validation_ds: | |
| count += 1 | |
| encoder_input = batch["encoder_input"].to(device) # (b, seq_len) | |
| encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len) | |
| # check that the batch size is 1 | |
| assert encoder_input.size( | |
| 0) == 1, "Batch size must be 1 for validation" | |
| model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device) | |
| source_text = batch["src_text"][0] | |
| target_text = batch["tgt_text"][0] | |
| model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy()) | |
| source_texts.append(source_text) | |
| expected.append(target_text) | |
| predicted.append(model_out_text) | |
| # Print the source, target and model output | |
| print_msg('-'*console_width) | |
| print_msg(f"{f'SOURCE: ':>12}{source_text}") | |
| print_msg(f"{f'TARGET: ':>12}{target_text}") | |
| print_msg(f"{f'PREDICTED: ':>12}{model_out_text}") | |
| if count == num_examples: | |
| print_msg('-'*console_width) | |
| break | |
| # if writer: | |
| # # Evaluate the character error rate | |
| # # Compute the char error rate | |
| # metric = torchmetrics.CharErrorRate() | |
| # cer = metric(predicted, expected) | |
| # writer.add_scalar('validation cer', cer, global_step) | |
| # writer.flush() | |
| # # Compute the word error rate | |
| # metric = torchmetrics.WordErrorRate() | |
| # wer = metric(predicted, expected) | |
| # writer.add_scalar('validation wer', wer, global_step) | |
| # writer.flush() | |
| # # Compute the BLEU metric | |
| # metric = torchmetrics.BLEUScore() | |
| # bleu = metric(predicted, expected) | |
| # writer.add_scalar('validation BLEU', bleu, global_step) | |
| # writer.flush() | |
| def get_all_sentences(ds, lang): | |
| for item in ds: | |
| yield item['translation'][lang] | |
| def get_or_build_tokenizer(config, ds, lang): | |
| print(f"Checking for existing tokenizer for {lang}") | |
| tokenizer_path = Path(config['tokenizer_file'].format(lang)) | |
| if not Path.exists(tokenizer_path): | |
| print(f"Building tokenizer for {lang}") | |
| # Most code taken from: https://huggingface.co/docs/tokenizers/quicktour | |
| tokenizer = Tokenizer(WordLevel(unk_token="[UNK]")) | |
| tokenizer.pre_tokenizer = Whitespace() | |
| trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2) | |
| print(f"Training tokenizer for {lang}") | |
| tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer) | |
| print(f"Saving tokenizer for {lang}") | |
| tokenizer.save(str(tokenizer_path)) | |
| else: | |
| print(f"Found existing tokenizer for {lang}") | |
| tokenizer = Tokenizer.from_file(str(tokenizer_path)) | |
| return tokenizer | |
| def get_ds(config): | |
| # It only has the train split, so we divide it overselves | |
| print(f"Loading dataset {config['datasource']}") | |
| ds_raw = load_dataset(f"{config['datasource']}", f"{config['lang_src']}-{config['lang_tgt']}", split='train') | |
| # Build tokenizers | |
| print(f"Building tokenizers for {config['lang_src']} and {config['lang_tgt']}") | |
| tokenizer_src = get_or_build_tokenizer(config, ds_raw, config['lang_src']) | |
| tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config['lang_tgt']) | |
| # Keep 90% for training, 10% for validation | |
| print("Splitting dataset into training and validation") | |
| train_ds_size = int(0.9 * len(ds_raw)) | |
| val_ds_size = len(ds_raw) - train_ds_size | |
| train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size]) | |
| train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len']) | |
| val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len']) | |
| # Find the maximum length of each sentence in the source and target sentence | |
| print("Finding the maximum length of the source and target sentences") | |
| max_len_src = 0 | |
| max_len_tgt = 0 | |
| for item in ds_raw: | |
| src_ids = tokenizer_src.encode(item['translation'][config['lang_src']]).ids | |
| tgt_ids = tokenizer_tgt.encode(item['translation'][config['lang_tgt']]).ids | |
| max_len_src = max(max_len_src, len(src_ids)) | |
| max_len_tgt = max(max_len_tgt, len(tgt_ids)) | |
| print(f'Max length of source sentence: {max_len_src}') | |
| print(f'Max length of target sentence: {max_len_tgt}') | |
| train_dataloader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True) | |
| val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True) | |
| return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt | |
| def get_model(config, vocab_src_len, vocab_tgt_len): | |
| model = build_transformer(vocab_src_len, vocab_tgt_len, config["seq_len"], config['seq_len'], d_model=config['d_model']) | |
| return model | |
| def train_model(config): | |
| # Define the device | |
| device = "cuda" if torch.cuda.is_available() else "mps" if torch.has_mps or torch.backends.mps.is_available() else "cpu" | |
| print("Using device:", device) | |
| if (device == 'cuda'): | |
| print(f"Device name: {torch.cuda.get_device_name(device.index)}") | |
| print(f"Device memory: {torch.cuda.get_device_properties(device.index).total_memory / 1024 ** 3} GB") | |
| elif (device == 'mps'): | |
| print(f"Device name: <mps>") | |
| else: | |
| print("NOTE: If you have a GPU, consider using it for training.") | |
| print(" On a Windows machine with NVidia GPU, check this video: https://www.youtube.com/watch?v=GMSjDTU8Zlc") | |
| print(" On a Mac machine, run: pip3 install --pre torch torchvision torchaudio torchtext --index-url https://download.pytorch.org/whl/nightly/cpu") | |
| device = torch.device(device) | |
| # Make sure the weights folder exists | |
| Path(f"{config['datasource']}_{config['model_folder']}").mkdir(parents=True, exist_ok=True) | |
| train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config) | |
| model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device) | |
| # Tensorboard | |
| # writer = SummaryWriter(config['experiment_name']) | |
| optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9) | |
| # If the user specified a model to preload before training, load it | |
| initial_epoch = 0 | |
| global_step = 0 | |
| preload = config['preload'] | |
| model_filename = latest_weights_file_path(config) if preload == 'latest' else get_weights_file_path(config, preload) if preload else None | |
| if model_filename: | |
| print(f'Preloading model {model_filename}') | |
| state = torch.load(model_filename) | |
| model.load_state_dict(state['model_state_dict']) | |
| initial_epoch = state['epoch'] + 1 | |
| optimizer.load_state_dict(state['optimizer_state_dict']) | |
| global_step = state['global_step'] | |
| else: | |
| print('No model to preload, starting from scratch') | |
| loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id('[PAD]'), label_smoothing=0.1).to(device) | |
| for epoch in range(initial_epoch, config['num_epochs']): | |
| torch.cuda.empty_cache() | |
| model.train() | |
| batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}") | |
| for batch in batch_iterator: | |
| encoder_input = batch['encoder_input'].to(device) # (b, seq_len) | |
| decoder_input = batch['decoder_input'].to(device) # (B, seq_len) | |
| encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len) | |
| decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len) | |
| # Run the tensors through the encoder, decoder and the projection layer | |
| encoder_output = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model) | |
| decoder_output = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) # (B, seq_len, d_model) | |
| proj_output = model.project(decoder_output) # (B, seq_len, vocab_size) | |
| # Compare the output with the label | |
| label = batch['label'].to(device) # (B, seq_len) | |
| # Compute the loss using a simple cross entropy | |
| loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1)) | |
| batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"}) | |
| # Log the loss | |
| # writer.add_scalar('train loss', loss.item(), global_step) | |
| # writer.flush() | |
| # Backpropagate the loss | |
| loss.backward() | |
| # Update the weights | |
| optimizer.step() | |
| optimizer.zero_grad(set_to_none=True) | |
| global_step += 1 | |
| # Run validation at the end of every epoch | |
| run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer=None) | |
| # Save the model at the end of every epoch | |
| model_filename = get_weights_file_path(config, f"{epoch:02d}") | |
| torch.save({ | |
| 'epoch': epoch, | |
| 'model_state_dict': model.state_dict(), | |
| 'optimizer_state_dict': optimizer.state_dict(), | |
| 'global_step': global_step | |
| }, model_filename) | |
| if __name__ == '__main__': | |
| warnings.filterwarnings("ignore") | |
| config = get_config() | |
| train_model(config) | |