File size: 11,115 Bytes
5853bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Speech generation (text-to-speech)

Source: <https://ai.google.dev/gemini-api/docs/speech-generation>

---

The Gemini API can transform text input into single speaker or multi-speaker audio using native text-to-speech (TTS) generation capabilities. Text-to-speech (TTS) generation is _controllable_ , meaning you can use natural language to structure interactions and guide the _style_ , _accent_ , _pace_ , and _tone_ of the audio.

The TTS capability differs from speech generation provided through the [Live API](/gemini-api/docs/live), which is designed for interactive, unstructured audio, and multimodal inputs and outputs. While the Live API excels in dynamic conversational contexts, TTS through the Gemini API is tailored for scenarios that require exact text recitation with fine-grained control over style and sound, such as podcast or audiobook generation.

This guide shows you how to generate single-speaker and multi-speaker audio from text.

**Preview:** Native text-to-speech (TTS) is in [Preview](/gemini-api/docs/models#preview).

## Before you begin

Ensure you use a Gemini 2.5 model variant with native text-to-speech (TTS) capabilities, as listed in the [Supported models](/gemini-api/docs/speech-generation#supported-models) section. For optimal results, consider which model best fits your specific use case. 

You may find it useful to [test the Gemini 2.5 TTS models in AI Studio](https://aistudio.google.com/generate-speech) before you start building.

**Note:** TTS models accept text-only inputs and produce audio-only outputs. For a complete list of restrictions specific to TTS models, review the [Limitations](/gemini-api/docs/speech-generation#limitations) section.

## Single-speaker text-to-speech

To convert text to single-speaker audio, set the response modality to "audio", and pass a `SpeechConfig` object with `VoiceConfig` set. You'll need to choose a voice name from the prebuilt output voices.

This example saves the output audio from the model in a wave file:
    
    
    from google import genai
    from google.genai import types
    import wave
    
    # Set up the wave file to save the output:
    def wave_file(filename, pcm, channels=1, rate=24000, sample_width=2):
       with wave.open(filename, "wb") as wf:
          wf.setnchannels(channels)
          wf.setsampwidth(sample_width)
          wf.setframerate(rate)
          wf.writeframes(pcm)
    
    client = genai.Client()
    
    response = client.models.generate_content(
       model="gemini-2.5-flash-preview-tts",
       contents="Say cheerfully: Have a wonderful day!",
       config=types.GenerateContentConfig(
          response_modalities=["AUDIO"],
          speech_config=types.SpeechConfig(
             voice_config=types.VoiceConfig(
                prebuilt_voice_config=types.PrebuiltVoiceConfig(
                   voice_name='Kore',
                )
             )
          ),
       )
    )
    
    data = response.candidates[0].content.parts[0].inline_data.data
    
    file_name='out.wav'
    wave_file(file_name, data) # Saves the file to current directory
    

For more code samples, refer to the "TTS - Get Started" file in the cookbooks repository: 

[View on GitHub](https://colab.research.google.com/github/google-gemini/cookbook/blob/main/quickstarts/Get_started_TTS.ipynb)

## Multi-speaker text-to-speech

For multi-speaker audio, you'll need a `MultiSpeakerVoiceConfig` object with each speaker (up to 2) configured as a `SpeakerVoiceConfig`. You'll need to define each `speaker` with the same names used in the prompt:
    
    
    from google import genai
    from google.genai import types
    import wave
    
    # Set up the wave file to save the output:
    def wave_file(filename, pcm, channels=1, rate=24000, sample_width=2):
       with wave.open(filename, "wb") as wf:
          wf.setnchannels(channels)
          wf.setsampwidth(sample_width)
          wf.setframerate(rate)
          wf.writeframes(pcm)
    
    client = genai.Client()
    
    prompt = """TTS the following conversation between Joe and Jane:
             Joe: How's it going today Jane?
             Jane: Not too bad, how about you?"""
    
    response = client.models.generate_content(
       model="gemini-2.5-flash-preview-tts",
       contents=prompt,
       config=types.GenerateContentConfig(
          response_modalities=["AUDIO"],
          speech_config=types.SpeechConfig(
             multi_speaker_voice_config=types.MultiSpeakerVoiceConfig(
                speaker_voice_configs=[
                   types.SpeakerVoiceConfig(
                      speaker='Joe',
                      voice_config=types.VoiceConfig(
                         prebuilt_voice_config=types.PrebuiltVoiceConfig(
                            voice_name='Kore',
                         )
                      )
                   ),
                   types.SpeakerVoiceConfig(
                      speaker='Jane',
                      voice_config=types.VoiceConfig(
                         prebuilt_voice_config=types.PrebuiltVoiceConfig(
                            voice_name='Puck',
                         )
                      )
                   ),
                ]
             )
          )
       )
    )
    
    data = response.candidates[0].content.parts[0].inline_data.data
    
    file_name='out.wav'
    wave_file(file_name, data) # Saves the file to current directory
    

## Controlling speech style with prompts

You can control style, tone, accent, and pace using natural language prompts for both single- and multi-speaker TTS. For example, in a single-speaker prompt, you can say:
    
    
    Say in an spooky whisper:
    "By the pricking of my thumbs...
    Something wicked this way comes"
    

In a multi-speaker prompt, provide the model with each speaker's name and corresponding transcript. You can also provide guidance for each speaker individually:
    
    
    Make Speaker1 sound tired and bored, and Speaker2 sound excited and happy:
    
    Speaker1: So... what's on the agenda today?
    Speaker2: You're never going to guess!
    

Try using a voice option that corresponds to the style or emotion you want to convey, to emphasize it even more. In the previous prompt, for example, _Enceladus_ 's breathiness might emphasize "tired" and "bored", while _Puck_ 's upbeat tone could complement "excited" and "happy".

## Generating a prompt to convert to audio

The TTS models only output audio, but you can use [other models](/gemini-api/docs/models) to generate a transcript first, then pass that transcript to the TTS model to read aloud.
    
    
    from google import genai
    from google.genai import types
    
    client = genai.Client()
    
    transcript = client.models.generate_content(
       model="gemini-2.0-flash",
       contents="""Generate a short transcript around 100 words that reads
                like it was clipped from a podcast by excited herpetologists.
                The hosts names are Dr. Anya and Liam.""").text
    
    response = client.models.generate_content(
       model="gemini-2.5-flash-preview-tts",
       contents=transcript,
       config=types.GenerateContentConfig(
          response_modalities=["AUDIO"],
          speech_config=types.SpeechConfig(
             multi_speaker_voice_config=types.MultiSpeakerVoiceConfig(
                speaker_voice_configs=[
                   types.SpeakerVoiceConfig(
                      speaker='Dr. Anya',
                      voice_config=types.VoiceConfig(
                         prebuilt_voice_config=types.PrebuiltVoiceConfig(
                            voice_name='Kore',
                         )
                      )
                   ),
                   types.SpeakerVoiceConfig(
                      speaker='Liam',
                      voice_config=types.VoiceConfig(
                         prebuilt_voice_config=types.PrebuiltVoiceConfig(
                            voice_name='Puck',
                         )
                      )
                   ),
                ]
             )
          )
       )
    )
    
    # ...Code to stream or save the output
    

## Voice options

TTS models support the following 30 voice options in the `voice_name` field:

**Zephyr** \-- _Bright_ | **Puck** \-- _Upbeat_ | **Charon** \-- _Informative_  
---|---|---  
**Kore** \-- _Firm_ | **Fenrir** \-- _Excitable_ | **Leda** \-- _Youthful_  
**Orus** \-- _Firm_ | **Aoede** \-- _Breezy_ | **Callirrhoe** \-- _Easy-going_  
**Autonoe** \-- _Bright_ | **Enceladus** \-- _Breathy_ | **Iapetus** \-- _Clear_  
**Umbriel** \-- _Easy-going_ | **Algieba** \-- _Smooth_ | **Despina** \-- _Smooth_  
**Erinome** \-- _Clear_ | **Algenib** \-- _Gravelly_ | **Rasalgethi** \-- _Informative_  
**Laomedeia** \-- _Upbeat_ | **Achernar** \-- _Soft_ | **Alnilam** \-- _Firm_  
**Schedar** \-- _Even_ | **Gacrux** \-- _Mature_ | **Pulcherrima** \-- _Forward_  
**Achird** \-- _Friendly_ | **Zubenelgenubi** \-- _Casual_ | **Vindemiatrix** \-- _Gentle_  
**Sadachbia** \-- _Lively_ | **Sadaltager** \-- _Knowledgeable_ | **Sulafat** \-- _Warm_  
  
You can hear all the voice options in [AI Studio](https://aistudio.google.com/generate-speech).

## Supported languages

The TTS models detect the input language automatically. They support the following 24 languages:

Language | BCP-47 Code | Language | BCP-47 Code  
---|---|---|---  
Arabic (Egyptian) | `ar-EG` | German (Germany) | `de-DE`  
English (US) | `en-US` | Spanish (US) | `es-US`  
French (France) | `fr-FR` | Hindi (India) | `hi-IN`  
Indonesian (Indonesia) | `id-ID` | Italian (Italy) | `it-IT`  
Japanese (Japan) | `ja-JP` | Korean (Korea) | `ko-KR`  
Portuguese (Brazil) | `pt-BR` | Russian (Russia) | `ru-RU`  
Dutch (Netherlands) | `nl-NL` | Polish (Poland) | `pl-PL`  
Thai (Thailand) | `th-TH` | Turkish (Turkey) | `tr-TR`  
Vietnamese (Vietnam) | `vi-VN` | Romanian (Romania) | `ro-RO`  
Ukrainian (Ukraine) | `uk-UA` | Bengali (Bangladesh) | `bn-BD`  
English (India) | `en-IN` & `hi-IN` bundle | Marathi (India) | `mr-IN`  
Tamil (India) | `ta-IN` | Telugu (India) | `te-IN`  
  
## Supported models

Model | Single speaker | Multispeaker  
---|---|---  
[Gemini 2.5 Flash Preview TTS](/gemini-api/docs/models#gemini-2.5-flash-preview-tts) | ✔️ | ✔️  
[Gemini 2.5 Pro Preview TTS](/gemini-api/docs/models#gemini-2.5-pro-preview-tts) | ✔️ | ✔️  
  
## Limitations

  * TTS models can only receive text inputs and generate audio outputs. 
  * A TTS session has a [context window](/gemini-api/docs/long-context) limit of 32k tokens.
  * Review [Languages](/gemini-api/docs/speech-generation#languages) section for language support.



## What's next

  * Try the [audio generation cookbook](https://colab.research.google.com/github/google-gemini/cookbook/blob/main/quickstarts/Get_started_TTS.ipynb).
  * Gemini's [Live API](/gemini-api/docs/live) offers interactive audio generation options you can interleave with other modalities.
  * For working with audio _inputs_ , visit the [Audio understanding](/gemini-api/docs/audio) guide.