File size: 15,339 Bytes
5853bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Structured output

Source: <https://ai.google.dev/gemini-api/docs/structured-output>

---

You can configure Gemini for structured output instead of unstructured text, allowing precise extraction and standardization of information for further processing. For example, you can use structured output to extract information from resumes, standardize them to build a structured database.

Gemini can generate either [JSON](/gemini-api/docs/structured-output#generating-json) or [enum values](/gemini-api/docs/structured-output#generating-enums) as structured output.

## Generating JSON

To constrain the model to generate JSON, configure a `responseSchema`. The model will then respond to any prompt with JSON-formatted output.
    
    
    from google import genai
    from pydantic import BaseModel
    
    class Recipe(BaseModel):
        recipe_name: str
        ingredients: list[str]
    
    client = genai.Client()
    response = client.models.generate_content(
        model="gemini-2.5-flash",
        contents="List a few popular cookie recipes, and include the amounts of ingredients.",
        config={
            "response_mime_type": "application/json",
            "response_schema": list[Recipe],
        },
    )
    # Use the response as a JSON string.
    print(response.text)
    
    # Use instantiated objects.
    my_recipes: list[Recipe] = response.parsed
    

**Note:** [Pydantic validators](https://docs.pydantic.dev/latest/concepts/validators/) are not yet supported. If a `pydantic.ValidationError` occurs, it is suppressed, and `.parsed` may be empty/null.

The output might look like this:
    
    
    [
      {
        "recipeName": "Chocolate Chip Cookies",
        "ingredients": [
          "1 cup (2 sticks) unsalted butter, softened",
          "3/4 cup granulated sugar",
          "3/4 cup packed brown sugar",
          "1 teaspoon vanilla extract",
          "2 large eggs",
          "2 1/4 cups all-purpose flour",
          "1 teaspoon baking soda",
          "1 teaspoon salt",
          "2 cups chocolate chips"
        ]
      },
      ...
    ]
    

## Generating enum values

In some cases you might want the model to choose a single option from a list of options. To implement this behavior, you can pass an _enum_ in your schema. You can use an enum option anywhere you could use a `string` in the `responseSchema`, because an enum is an array of strings. Like a JSON schema, an enum lets you constrain model output to meet the requirements of your application.

For example, assume that you're developing an application to classify musical instruments into one of five categories: `"Percussion"`, `"String"`, `"Woodwind"`, `"Brass"`, or "`"Keyboard"`". You could create an enum to help with this task.

In the following example, you pass an enum as the `responseSchema`, constraining the model to choose the most appropriate option.
    
    
    from google import genai
    import enum
    
    class Instrument(enum.Enum):
      PERCUSSION = "Percussion"
      STRING = "String"
      WOODWIND = "Woodwind"
      BRASS = "Brass"
      KEYBOARD = "Keyboard"
    
    client = genai.Client()
    response = client.models.generate_content(
        model='gemini-2.5-flash',
        contents='What type of instrument is an oboe?',
        config={
            'response_mime_type': 'text/x.enum',
            'response_schema': Instrument,
        },
    )
    
    print(response.text)
    # Woodwind
    

The Python library will translate the type declarations for the API. However, the API accepts a subset of the OpenAPI 3.0 schema ([Schema](https://ai.google.dev/api/caching#schema)).

There are two other ways to specify an enumeration. You can use a [`Literal`](https://docs.pydantic.dev/1.10/usage/types/#literal-type): ```
    
    
    Literal["Percussion", "String", "Woodwind", "Brass", "Keyboard"]
    

And you can also pass the schema as JSON:
    
    
    from google import genai
    
    client = genai.Client()
    response = client.models.generate_content(
        model='gemini-2.5-flash',
        contents='What type of instrument is an oboe?',
        config={
            'response_mime_type': 'text/x.enum',
            'response_schema': {
                "type": "STRING",
                "enum": ["Percussion", "String", "Woodwind", "Brass", "Keyboard"],
            },
        },
    )
    
    print(response.text)
    # Woodwind
    

Beyond basic multiple choice problems, you can use an enum anywhere in a JSON schema. For example, you could ask the model for a list of recipe titles and use a `Grade` enum to give each title a popularity grade:
    
    
    from google import genai
    
    import enum
    from pydantic import BaseModel
    
    class Grade(enum.Enum):
        A_PLUS = "a+"
        A = "a"
        B = "b"
        C = "c"
        D = "d"
        F = "f"
    
    class Recipe(BaseModel):
      recipe_name: str
      rating: Grade
    
    client = genai.Client()
    response = client.models.generate_content(
        model='gemini-2.5-flash',
        contents='List 10 home-baked cookie recipes and give them grades based on tastiness.',
        config={
            'response_mime_type': 'application/json',
            'response_schema': list[Recipe],
        },
    )
    
    print(response.text)
    

The response might look like this:
    
    
    [
      {
        "recipe_name": "Chocolate Chip Cookies",
        "rating": "a+"
      },
      {
        "recipe_name": "Peanut Butter Cookies",
        "rating": "a"
      },
      {
        "recipe_name": "Oatmeal Raisin Cookies",
        "rating": "b"
      },
      ...
    ]
    

## About JSON schemas

Configuring the model for JSON output using `responseSchema` parameter relies on `Schema` object to define its structure. This object represents a select subset of the [OpenAPI 3.0 Schema object](https://spec.openapis.org/oas/v3.0.3#schema-object), and also adds a `propertyOrdering` field.

**Tip:** On Python, when you use a Pydantic model, you don't need to directly work with `Schema` objects, as it gets automatically converted to the corresponding JSON schema. To learn more, see JSON schemas in Python.

Here's a pseudo-JSON representation of all the `Schema` fields:
    
    
    {
      "type": enum (Type),
      "format": string,
      "description": string,
      "nullable": boolean,
      "enum": [
        string
      ],
      "maxItems": integer,
      "minItems": integer,
      "properties": {
        string: {
          object (Schema)
        },
        ...
      },
      "required": [
        string
      ],
      "propertyOrdering": [
        string
      ],
      "items": {
        object (Schema)
      }
    }
    

The `Type` of the schema must be one of the OpenAPI [Data Types](https://spec.openapis.org/oas/v3.0.3#data-types), or a union of those types (using `anyOf`). Only a subset of fields is valid for each `Type`. The following list maps each `Type` to a subset of the fields that are valid for that type:

  * `string` -> `enum`, `format`, `nullable`
  * `integer` -> `format`, `minimum`, `maximum`, `enum`, `nullable`
  * `number` -> `format`, `minimum`, `maximum`, `enum`, `nullable`
  * `boolean` -> `nullable`
  * `array` -> `minItems`, `maxItems`, `items`, `nullable`
  * `object` -> `properties`, `required`, `propertyOrdering`, `nullable`



Here are some example schemas showing valid type-and-field combinations:
    
    
    { "type": "string", "enum": ["a", "b", "c"] }
    
    { "type": "string", "format": "date-time" }
    
    { "type": "integer", "format": "int64" }
    
    { "type": "number", "format": "double" }
    
    { "type": "boolean" }
    
    { "type": "array", "minItems": 3, "maxItems": 3, "items": { "type": ... } }
    
    { "type": "object",
      "properties": {
        "a": { "type": ... },
        "b": { "type": ... },
        "c": { "type": ... }
      },
      "nullable": true,
      "required": ["c"],
      "propertyOrdering": ["c", "b", "a"]
    }
    

For complete documentation of the Schema fields as they're used in the Gemini API, see the [Schema reference](/api/caching#Schema).

### Property ordering

**Warning:** When you're configuring a JSON schema, make sure to set `propertyOrdering[]`, and when you provide examples, make sure that the property ordering in the examples matches the schema.

When you're working with JSON schemas in the Gemini API, the order of properties is important. By default, the API orders properties alphabetically and does not preserve the order in which the properties are defined (although the [Google Gen AI SDKs](/gemini-api/docs/sdks) may preserve this order). If you're providing examples to the model with a schema configured, and the property ordering of the examples is not consistent with the property ordering of the schema, the output could be rambling or unexpected.

To ensure a consistent, predictable ordering of properties, you can use the optional `propertyOrdering[]` field.
    
    
    "propertyOrdering": ["recipeName", "ingredients"]
    

`propertyOrdering[]` – not a standard field in the OpenAPI specification – is an array of strings used to determine the order of properties in the response. By specifying the order of properties and then providing examples with properties in that same order, you can potentially improve the quality of results. `propertyOrdering` is only supported when you manually create `types.Schema`.

### Schemas in Python

When you're using the Python library, the value of `response_schema` must be one of the following:

  * A type, as you would use in a type annotation (see the Python [`typing` module](https://docs.python.org/3/library/typing.html))
  * An instance of [`genai.types.Schema`](https://googleapis.github.io/python-genai/genai.html#genai.types.Schema)
  * The `dict` equivalent of `genai.types.Schema`



The easiest way to define a schema is with a Pydantic type (as shown in the previous example):
    
    
    config={'response_mime_type': 'application/json',
            'response_schema': list[Recipe]}
    

When you use a Pydantic type, the Python library builds out a JSON schema for you and sends it to the API. For additional examples, see the [Python library docs](https://googleapis.github.io/python-genai/index.html#json-response-schema).

The Python library supports schemas defined with the following types (where `AllowedType` is any allowed type):

  * `int`
  * `float`
  * `bool`
  * `str`
  * `list[AllowedType]`
  * `AllowedType|AllowedType|...`
  * For structured types: 
    * `dict[str, AllowedType]`. This annotation declares all dict values to be the same type, but doesn't specify what keys should be included.
    * User-defined [Pydantic models](https://docs.pydantic.dev/latest/concepts/models/). This approach lets you specify the key names and define different types for the values associated with each of the keys, including nested structures.



### JSON Schema support

[JSON Schema](https://json-schema.org/) is a more recent specification than OpenAPI 3.0, which the [Schema](/api/caching#Schema) object is based on. Support for JSON Schema is available as a preview using the field [`responseJsonSchema`](/api/generate-content#FIELDS.response_json_schema) which accepts any JSON Schema with the following limitations:

  * It only works with Gemini 2.5.
  * While all JSON Schema properties can be passed, not all are supported. See the [documentation](/api/generate-content#FIELDS.response_json_schema) for the field for more details.
  * Recursive references can only be used as the value of a non-required object property.
  * Recursive references are unrolled to a finite degree, based on the size of the schema.
  * Schemas that contain `$ref` cannot contain any properties other than those starting with a `$`.



Here's an example of generating a JSON Schema with Pydantic and submitting it to the model:
    
    
    curl "https://generativelanguage.googleapis.com/v1alpha/models/\
    gemini-2.5-flash:generateContent" \
        -H "x-goog-api-key: $GEMINI_API_KEY"\
        -H 'Content-Type: application/json' \
        -d @- <<EOF
    {
      "contents": [{
        "parts":[{
          "text": "Please give a random example following this schema"
        }]
      }],
      "generationConfig": {
        "response_mime_type": "application/json",
        "response_json_schema": $(python3 - << PYEOF
        from enum import Enum
        from typing import List, Optional, Union, Set
        from pydantic import BaseModel, Field, ConfigDict
        import json
    
        class UserRole(str, Enum):
            ADMIN = "admin"
            VIEWER = "viewer"
    
        class Address(BaseModel):
            street: str
            city: str
    
        class UserProfile(BaseModel):
            username: str = Field(description="User's unique name")
            age: Optional[int] = Field(ge=0, le=120)
            roles: Set[UserRole] = Field(min_items=1)
            contact: Union[Address, str]
            model_config = ConfigDict(title="User Schema")
    
        # Generate and print the JSON Schema
        print(json.dumps(UserProfile.model_json_schema(), indent=2))
        PYEOF
        )
      }
    }
    EOF
    

Passing JSON Schema directly is not yet supported when using the SDK.

## Best practices

Keep the following considerations and best practices in mind when you're using a response schema:

  * The size of your response schema counts towards the input token limit.
  * By default, fields are optional, meaning the model can populate the fields or skip them. You can set fields as required to force the model to provide a value. If there's insufficient context in the associated input prompt, the model generates responses mainly based on the data it was trained on.
  * A complex schema can result in an `InvalidArgument: 400` error. Complexity might come from long property names, long array length limits, enums with many values, objects with lots of optional properties, or a combination of these factors.

If you get this error with a valid schema, make one or more of the following changes to resolve the error:

    * Shorten property names or enum names.
    * Flatten nested arrays.
    * Reduce the number of properties with constraints, such as numbers with minimum and maximum limits.
    * Reduce the number of properties with complex constraints, such as properties with complex formats like `date-time`.
    * Reduce the number of optional properties.
    * Reduce the number of valid values for enums.
  * If you aren't seeing the results you expect, add more context to your input prompts or revise your response schema. For example, review the model's response without structured output to see how the model responds. You can then update your response schema so that it better fits the model's output. For additional troubleshooting tips on structured output, see the [troubleshooting guide](/gemini-api/docs/troubleshooting#repetitive-tokens).




## What's next

Now that you've learned how to generate structured output, you might want to try using Gemini API tools:

  * [Function calling](/gemini-api/docs/function-calling)
  * [Code execution](/gemini-api/docs/code-execution)
  * [Grounding with Google Search](/gemini-api/docs/grounding)