File size: 14,310 Bytes
5853bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Image understanding

Source: <https://ai.google.dev/gemini-api/docs/image-understanding>

---

Gemini models are built to be multimodal from the ground up, unlocking a wide range of image processing and computer vision tasks including but not limited to image captioning, classification, and visual question answering without having to train specialized ML models.

**Tip:** In addition to their general multimodal capabilities, Gemini models (2.0 and newer) offer **improved accuracy** for specific use cases like object detection and segmentation, through additional training. See the Capabilities section for more details.

## Passing images to Gemini

You can provide images as input to Gemini using two methods:

  * Passing inline image data: Ideal for smaller files (total request size less than 20MB, including prompts).
  * Uploading images using the File API: Recommended for larger files or for reusing images across multiple requests.



### Passing inline image data

You can pass inline image data in the request to `generateContent`. You can provide image data as Base64 encoded strings or by reading local files directly (depending on the language).

The following example shows how to read an image from a local file and pass it to `generateContent` API for processing.
    
    
      from google.genai import types
    
      with open('path/to/small-sample.jpg', 'rb') as f:
          image_bytes = f.read()
    
      response = client.models.generate_content(
        model='gemini-2.5-flash',
        contents=[
          types.Part.from_bytes(
            data=image_bytes,
            mime_type='image/jpeg',
          ),
          'Caption this image.'
        ]
      )
    
      print(response.text)
    

You can also fetch an image from a URL, convert it to bytes, and pass it to `generateContent` as shown in the following examples.
    
    
    from google import genai
    from google.genai import types
    
    import requests
    
    image_path = "https://goo.gle/instrument-img"
    image_bytes = requests.get(image_path).content
    image = types.Part.from_bytes(
      data=image_bytes, mime_type="image/jpeg"
    )
    
    client = genai.Client()
    
    response = client.models.generate_content(
        model="gemini-2.5-flash",
        contents=["What is this image?", image],
    )
    
    print(response.text)
    

**Note:** Inline image data limits your total request size (text prompts, system instructions, and inline bytes) to 20MB. For larger requests, upload image files using the File API. Files API is also more efficient for scenarios that use the same image repeatedly.

### Uploading images using the File API

For large files or to be able to use the same image file repeatedly, use the Files API. The following code uploads an image file and then uses the file in a call to `generateContent`. See the [Files API guide](/gemini-api/docs/files) for more information and examples.
    
    
    from google import genai
    
    client = genai.Client()
    
    my_file = client.files.upload(file="path/to/sample.jpg")
    
    response = client.models.generate_content(
        model="gemini-2.5-flash",
        contents=[my_file, "Caption this image."],
    )
    
    print(response.text)
    

## Prompting with multiple images

You can provide multiple images in a single prompt by including multiple image `Part` objects in the `contents` array. These can be a mix of inline data (local files or URLs) and File API references.
    
    
    from google import genai
    from google.genai import types
    
    client = genai.Client()
    
    # Upload the first image
    image1_path = "path/to/image1.jpg"
    uploaded_file = client.files.upload(file=image1_path)
    
    # Prepare the second image as inline data
    image2_path = "path/to/image2.png"
    with open(image2_path, 'rb') as f:
        img2_bytes = f.read()
    
    # Create the prompt with text and multiple images
    response = client.models.generate_content(
    
        model="gemini-2.5-flash",
        contents=[
            "What is different between these two images?",
            uploaded_file,  # Use the uploaded file reference
            types.Part.from_bytes(
                data=img2_bytes,
                mime_type='image/png'
            )
        ]
    )
    
    print(response.text)
    

## Object detection

From Gemini 2.0 onwards, models are further trained to detect objects in an image and get their bounding box coordinates. The coordinates, relative to image dimensions, scale to [0, 1000]. You need to descale these coordinates based on your original image size.
    
    
    from google import genai
    from google.genai import types
    from PIL import Image
    import json
    
    client = genai.Client()
    prompt = "Detect the all of the prominent items in the image. The box_2d should be [ymin, xmin, ymax, xmax] normalized to 0-1000."
    
    image = Image.open("/path/to/image.png")
    
    config = types.GenerateContentConfig(
      response_mime_type="application/json"
      )
    
    response = client.models.generate_content(model="gemini-2.5-flash",
                                              contents=[image, prompt],
                                              config=config
                                              )
    
    width, height = image.size
    bounding_boxes = json.loads(response.text)
    
    converted_bounding_boxes = []
    for bounding_box in bounding_boxes:
        abs_y1 = int(bounding_box["box_2d"][0]/1000 * height)
        abs_x1 = int(bounding_box["box_2d"][1]/1000 * width)
        abs_y2 = int(bounding_box["box_2d"][2]/1000 * height)
        abs_x2 = int(bounding_box["box_2d"][3]/1000 * width)
        converted_bounding_boxes.append([abs_x1, abs_y1, abs_x2, abs_y2])
    
    print("Image size: ", width, height)
    print("Bounding boxes:", converted_bounding_boxes)
    
    

**Note:** The model also supports generating bounding boxes based on custom instructions, such as: "Show bounding boxes of all green objects in this image". It also support custom labels like "label the items with the allergens they can contain".

For more examples, check following notebooks in the [Gemini Cookbook](https://github.com/google-gemini/cookbook):

  * [2D spatial understanding notebook](https://colab.research.google.com/github/google-gemini/cookbook/blob/main/quickstarts/Spatial_understanding.ipynb)
  * [Experimental 3D pointing notebook](https://colab.research.google.com/github/google-gemini/cookbook/blob/main/examples/Spatial_understanding_3d.ipynb)



## Segmentation

Starting with Gemini 2.5, models not only detect items but also segment them and provide their contour masks.

The model predicts a JSON list, where each item represents a segmentation mask. Each item has a bounding box ("`box_2d`") in the format `[y0, x0, y1, x1]` with normalized coordinates between 0 and 1000, a label ("`label`") that identifies the object, and finally the segmentation mask inside the bounding box, as base64 encoded png that is a probability map with values between 0 and 255. The mask needs to be resized to match the bounding box dimensions, then binarized at your confidence threshold (127 for the midpoint).

**Note:** For better results, disable [thinking](/gemini-api/docs/thinking) by setting the thinking budget to 0. See code sample below for an example.
    
    
    from google import genai
    from google.genai import types
    from PIL import Image, ImageDraw
    import io
    import base64
    import json
    import numpy as np
    import os
    
    client = genai.Client()
    
    def parse_json(json_output: str):
      # Parsing out the markdown fencing
      lines = json_output.splitlines()
      for i, line in enumerate(lines):
        if line == "```json":
          json_output = "\n".join(lines[i+1:])  # Remove everything before "```json"
          output = json_output.split("```")[0]  # Remove everything after the closing "```"
          break  # Exit the loop once "```json" is found
      return json_output
    
    def extract_segmentation_masks(image_path: str, output_dir: str = "segmentation_outputs"):
      # Load and resize image
      im = Image.open(image_path)
      im.thumbnail([1024, 1024], Image.Resampling.LANCZOS)
    
      prompt = """
      Give the segmentation masks for the wooden and glass items.
      Output a JSON list of segmentation masks where each entry contains the 2D
      bounding box in the key "box_2d", the segmentation mask in key "mask", and
      the text label in the key "label". Use descriptive labels.
      """
    
      config = types.GenerateContentConfig(
        thinking_config=types.ThinkingConfig(thinking_budget=0) # set thinking_budget to 0 for better results in object detection
      )
    
      response = client.models.generate_content(
        model="gemini-2.5-flash",
        contents=[prompt, im], # Pillow images can be directly passed as inputs (which will be converted by the SDK)
        config=config
      )
    
      # Parse JSON response
      items = json.loads(parse_json(response.text))
    
      # Create output directory
      os.makedirs(output_dir, exist_ok=True)
    
      # Process each mask
      for i, item in enumerate(items):
          # Get bounding box coordinates
          box = item["box_2d"]
          y0 = int(box[0] / 1000 * im.size[1])
          x0 = int(box[1] / 1000 * im.size[0])
          y1 = int(box[2] / 1000 * im.size[1])
          x1 = int(box[3] / 1000 * im.size[0])
    
          # Skip invalid boxes
          if y0 >= y1 or x0 >= x1:
              continue
    
          # Process mask
          png_str = item["mask"]
          if not png_str.startswith("data:image/png;base64,"):
              continue
    
          # Remove prefix
          png_str = png_str.removeprefix("data:image/png;base64,")
          mask_data = base64.b64decode(png_str)
          mask = Image.open(io.BytesIO(mask_data))
    
          # Resize mask to match bounding box
          mask = mask.resize((x1 - x0, y1 - y0), Image.Resampling.BILINEAR)
    
          # Convert mask to numpy array for processing
          mask_array = np.array(mask)
    
          # Create overlay for this mask
          overlay = Image.new('RGBA', im.size, (0, 0, 0, 0))
          overlay_draw = ImageDraw.Draw(overlay)
    
          # Create overlay for the mask
          color = (255, 255, 255, 200)
          for y in range(y0, y1):
              for x in range(x0, x1):
                  if mask_array[y - y0, x - x0] > 128:  # Threshold for mask
                      overlay_draw.point((x, y), fill=color)
    
          # Save individual mask and its overlay
          mask_filename = f"{item['label']}_{i}_mask.png"
          overlay_filename = f"{item['label']}_{i}_overlay.png"
    
          mask.save(os.path.join(output_dir, mask_filename))
    
          # Create and save overlay
          composite = Image.alpha_composite(im.convert('RGBA'), overlay)
          composite.save(os.path.join(output_dir, overlay_filename))
          print(f"Saved mask and overlay for {item['label']} to {output_dir}")
    
    # Example usage
    if __name__ == "__main__":
      extract_segmentation_masks("path/to/image.png")
    
    

Check the [segmentation example](https://colab.research.google.com/github/google-gemini/cookbook/blob/main/quickstarts/Spatial_understanding.ipynb#scrollTo=WQJTJ8wdGOKx) in the cookbook guide for a more detailed example.

![A table with cupcakes, with the wooden and glass objects highlighted](/static/gemini-api/docs/images/segmentation.jpg) An example segmentation output with objects and segmentation masks

## Supported image formats

Gemini supports the following image format MIME types:

  * PNG - `image/png`
  * JPEG - `image/jpeg`
  * WEBP - `image/webp`
  * HEIC - `image/heic`
  * HEIF - `image/heif`



## Capabilities

All Gemini model versions are multimodal and can be utilized in a wide range of image processing and computer vision tasks including but not limited to image captioning, visual question and answering, image classification, object detection and segmentation.

Gemini can reduce the need to use specialized ML models depending on your quality and performance requirements.

Some later model versions are specifically trained improve accuracy of specialized tasks in addition to generic capabilities:

  * **Gemini 2.0 models** are further trained to support enhanced object detection.

  * **Gemini 2.5 models** are further trained to support enhanced segmentation in addition to object detection.




## Limitations and key technical information

### File limit

Gemini 2.5 Pro/Flash, 2.0 Flash, 1.5 Pro, and 1.5 Flash support a maximum of 3,600 image files per request.

### Token calculation

  * **Gemini 1.5 Flash and Gemini 1.5 Pro** : 258 tokens if both dimensions <= 384 pixels. Larger images are tiled (min tile 256px, max 768px, resized to 768x768), with each tile costing 258 tokens.
  * **Gemini 2.0 Flash and Gemini 2.5 Flash/Pro** : 258 tokens if both dimensions <= 384 pixels. Larger images are tiled into 768x768 pixel tiles, each costing 258 tokens.



## Tips and best practices

  * Verify that images are correctly rotated.
  * Use clear, non-blurry images.
  * When using a single image with text, place the text prompt _after_ the image part in the `contents` array.



## What's next

This guide shows you how to upload image files and generate text outputs from image inputs. To learn more, see the following resources:

  * [Files API](/gemini-api/docs/files): Learn more about uploading and managing files for use with Gemini.
  * [System instructions](/gemini-api/docs/text-generation#system-instructions): System instructions let you steer the behavior of the model based on your specific needs and use cases.
  * [File prompting strategies](/gemini-api/docs/files#prompt-guide): The Gemini API supports prompting with text, image, audio, and video data, also known as multimodal prompting.
  * [Safety guidance](/gemini-api/docs/safety-guidance): Sometimes generative AI models produce unexpected outputs, such as outputs that are inaccurate, biased, or offensive. Post-processing and human evaluation are essential to limit the risk of harm from such outputs.