File size: 49,396 Bytes
ab44c3c e2458a1 a9d08a9 e2458a1 a9d08a9 e2458a1 ab44c3c e2458a1 a9d08a9 e2458a1 5c8c123 e2458a1 ab44c3c e2458a1 ab44c3c e2458a1 ab44c3c 2152439 e2458a1 ab44c3c e2458a1 ab44c3c 2152439 ab44c3c e2458a1 ab44c3c e2458a1 ab44c3c 2152439 ab44c3c 2152439 ab44c3c 2152439 e2458a1 a9d08a9 e2458a1 a9d08a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 |
# app.py (was: backend/main.py)
import os
import re
import io
import sqlite3
from datetime import datetime, timezone
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, status, Header, Depends, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from pydantic import BaseModel, EmailStr
from passlib.context import CryptContext
import jwt
# File parsing libs
from docx import Document as DocxDocument
import PyPDF2
# ML / NLP libs
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np
# TF-IDF
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Semantic embeddings for plagiarism (combined approach)
try:
from sentence_transformers import SentenceTransformer
except Exception:
SentenceTransformer = None
# LanguageTool (may require Java)
try:
import language_tool_python
except Exception:
language_tool_python = None
# GECToR (neural grammatical error correction)
try:
# This is the official import path from gotutiyan/gector README
from gector import GECToR, predict as gector_predict, load_verb_dict
except Exception:
GECToR = None
gector_predict = None
load_verb_dict = None
# PDF generator (the new file)
from pdf_reports import generate_report
# ------------------ ENV & DB SETUP ------------------
load_dotenv()
JWT_SECRET = os.getenv("JWT_SECRET", "super_secret_key_change_this")
JWT_ALGO = os.getenv("JWT_ALGO", "HS256")
DB_PATH = os.getenv("DB_PATH", "truewrite.db")
CORPUS_DIR = os.getenv("CORPUS_DIR", "corpus")
CORPUS_RAW = os.getenv("CORPUS_RAW", "corpus_raw")
# Combined plagiarism weights
PLAG_ALPHA = float(os.getenv("PLAG_ALPHA", "0.4")) # TF-IDF weight; (1-alpha) for embeddings
pwd_context = CryptContext(schemes=["pbkdf2_sha256"], deprecated="auto")
# SQLite DB (simple demo)
conn = sqlite3.connect(DB_PATH, check_same_thread=False)
conn.row_factory = sqlite3.Row
cur = conn.cursor()
# Create tables if not exist
cur.execute("""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
email TEXT NOT NULL UNIQUE,
password_hash TEXT NOT NULL,
created_at TEXT NOT NULL
)
""")
cur.execute("""
CREATE TABLE IF NOT EXISTS history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER NOT NULL,
tool TEXT NOT NULL,
input_text TEXT,
result_summary TEXT,
created_at TEXT NOT NULL,
FOREIGN KEY (user_id) REFERENCES users(id)
)
""")
conn.commit()
# ------------------ FASTAPI APP ------------------
app = FastAPI(title="TrueWrite Scan (Python Backend)")
app.add_middleware(
CORSMiddleware,
# This regex allows ANY URL (HTTP or HTTPS) to connect
allow_origin_regex=r"https?://.*",
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ------------------ MODELS ------------------
class SignupRequest(BaseModel):
name: str
email: EmailStr
password: str
class LoginRequest(BaseModel):
email: EmailStr
password: str
class TextRequest(BaseModel):
text: str
# ------------------ AUTH HELPERS ------------------
def hash_password(pw: str) -> str:
return pwd_context.hash(pw)
def verify_password(plain: str, hashed: str) -> bool:
return pwd_context.verify(plain, hashed)
def create_token(user_id: int, email: str) -> str:
payload = {"user_id": user_id, "email": email}
token = jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGO)
if isinstance(token, bytes):
token = token.decode("utf-8")
return token
def decode_token(token: str):
try:
payload = jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGO])
return payload
except jwt.PyJWTError:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid token"
)
def get_current_user(authorization: str = Header(None)):
if not authorization or not authorization.startswith("Bearer "):
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Missing token"
)
token = authorization.split(" ", 1)[1]
payload = decode_token(token)
user_id = payload.get("user_id")
cur.execute("SELECT * FROM users WHERE id = ?", (user_id,))
row = cur.fetchone()
if not row:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="User not found"
)
return {"id": row["id"], "name": row["name"], "email": row["email"]}
def now_iso():
return datetime.now(timezone.utc).isoformat()
def save_history(user_id: int, tool: str, input_text: str, summary: str):
trimmed = (input_text[:500] + "...") if len(input_text) > 500 else input_text
cur.execute(
"INSERT INTO history (user_id, tool, input_text, result_summary, created_at) VALUES (?, ?, ?, ?, ?)",
(user_id, tool, trimmed, summary, now_iso()),
)
conn.commit()
# ------------------ TEXT HELPERS ------------------
def count_words(text: str) -> int:
tokens = text.strip().split()
return len(tokens) if text.strip() else 0
def simple_grammar_correct(text: str):
"""Old heuristic grammar fixer (kept as fallback)."""
corrections = 0
original_words = count_words(text)
before = text
text = re.sub(r"\s{2,}", " ", text)
if text != before:
corrections += 1
before = text
text = re.sub(r"\bi\b", "I", text)
if text != before:
corrections += 1
def cap_match(m):
return m.group(0).upper()
before = text
text = re.sub(r"(^\s*\w|[.!?]\s+\w)", cap_match, text)
if text != before:
corrections += 1
if text.strip() and not re.search(r"[.!?]\s*$", text.strip()):
text = text.strip() + "."
corrections += 1
return text, corrections, original_words
# ------------------ CORPUS BUILDING (from corpus_raw -> corpus) ------------------
def extract_from_docx_path(path: str) -> str:
doc = DocxDocument(path)
paragraphs = [p.text for p in doc.paragraphs]
return "\n".join(paragraphs)
def extract_from_pdf_path(path: str) -> str:
with open(path, "rb") as f:
reader = PyPDF2.PdfReader(f)
texts = []
for pg in range(len(reader.pages)):
try:
texts.append(reader.pages[pg].extract_text() or "")
except Exception:
texts.append("")
return "\n".join(texts)
def build_corpus_from_raw(raw_dir: str = CORPUS_RAW, out_dir: str = CORPUS_DIR):
"""
Convert any .pdf / .docx / .txt files from corpus_raw/ into .txt files in corpus/.
This mirrors your build_corpus.py logic but is called automatically at startup.
"""
os.makedirs(raw_dir, exist_ok=True)
os.makedirs(out_dir, exist_ok=True)
for fname in os.listdir(raw_dir):
inpath = os.path.join(raw_dir, fname)
if not os.path.isfile(inpath):
continue
outname = os.path.splitext(fname)[0] + ".txt"
outpath = os.path.join(out_dir, outname)
try:
ext = fname.lower()
if ext.endswith(".docx"):
text = extract_from_docx_path(inpath)
elif ext.endswith(".pdf"):
text = extract_from_pdf_path(inpath)
elif ext.endswith(".txt"):
with open(inpath, "r", encoding="utf-8", errors="ignore") as f:
text = f.read()
else:
print("[CorpusRaw] Skipping unsupported:", fname)
continue
text = text.strip()
with open(outpath, "w", encoding="utf-8") as fo:
fo.write(text)
print("[CorpusRaw] Wrote:", outpath)
except Exception as e:
print("[CorpusRaw] Failed", fname, "->", e)
# ------------------ TF-IDF CORPUS LOADING ------------------
vectorizer = None
corpus_tfidf = None
corpus_titles = []
corpus_texts = []
def load_corpus(corpus_dir=CORPUS_DIR):
"""
Load .txt corpus files from CORPUS_DIR, build TF-IDF index.
Semantic embeddings are built separately in load_embeddings().
"""
global vectorizer, corpus_tfidf, corpus_titles, corpus_texts
corpus_titles = []
corpus_texts = []
if not os.path.isdir(corpus_dir):
os.makedirs(corpus_dir, exist_ok=True)
print("[Corpus] Created empty corpus directory:", corpus_dir)
vectorizer = None
corpus_tfidf = None
return
for fname in os.listdir(corpus_dir):
if fname.lower().endswith(".txt"):
path = os.path.join(corpus_dir, fname)
try:
with open(path, "r", encoding="utf-8", errors="ignore") as f:
txt = f.read()
corpus_titles.append(fname)
corpus_texts.append(txt)
except Exception as e:
print(f"[Corpus] Failed to read {path}: {e}")
if corpus_texts:
try:
vectorizer = TfidfVectorizer(
ngram_range=(1, 3),
stop_words="english",
max_features=50000
)
corpus_tfidf = vectorizer.fit_transform(corpus_texts)
print(f"[Corpus] Loaded {len(corpus_texts)} documents into TF-IDF index")
except Exception as e:
print("[Corpus] TF-IDF build failed:", e)
vectorizer = None
corpus_tfidf = None
else:
vectorizer = None
corpus_tfidf = None
print("[Corpus] No .txt documents found in", corpus_dir)
# ------------------ SEMANTIC EMBEDDINGS (SentenceTransformers) ------------------
emb_model = None
corpus_emb = None
EMB_MODEL_NAME = os.getenv("PLAG_EMB_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
def load_embeddings():
"""
Build semantic embedding index for plagiarism using sentence-transformers.
"""
global emb_model, corpus_emb
if SentenceTransformer is None:
print("[Embeddings] sentence-transformers not installed; skipping semantic index.")
emb_model = None
corpus_emb = None
return
if not corpus_texts:
print("[Embeddings] No corpus texts available; semantic index not built.")
emb_model = None
corpus_emb = None
return
try:
emb_model = SentenceTransformer(EMB_MODEL_NAME)
corpus_emb = emb_model.encode(
corpus_texts,
convert_to_numpy=True,
show_progress_bar=False,
normalize_embeddings=True,
)
print(f"[Embeddings] Loaded '{EMB_MODEL_NAME}' and encoded {len(corpus_texts)} corpus docs.")
except Exception as e:
emb_model = None
corpus_emb = None
print("[Embeddings] Failed to load or encode corpus:", e)
# Build corpus & embeddings at startup
build_corpus_from_raw()
load_corpus()
load_embeddings()
# ------------------ HF MODEL LOADING (AI Detector) ------------------
AI_DETECTOR_MODEL = "openai-community/roberta-base-openai-detector"
tokenizer = None
model = None
device = None
try:
tokenizer = AutoTokenizer.from_pretrained(AI_DETECTOR_MODEL)
model = AutoModelForSequenceClassification.from_pretrained(AI_DETECTOR_MODEL)
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"[AI Detector] Loaded {AI_DETECTOR_MODEL} on {device}")
except Exception as e:
tokenizer = None
model = None
device = None
print("[AI Detector] Failed to load HF model β using heuristic fallback. Error:", e)
# ------------------ GECToR LOADING (Neural GEC) ------------------
GEC_MODEL = None
GEC_TOKENIZER = None
GEC_ENCODE = None
GEC_DECODE = None
GEC_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if GECToR is not None and gector_predict is not None and load_verb_dict is not None:
try:
print("[GECToR] Initializing model... (This may take a bit on first run)")
GEC_MODEL_ID = os.getenv("GEC_MODEL_ID", "gotutiyan/gector-roberta-base-5k")
VERB_DICT_PATH = os.getenv("GEC_VERB_DICT", "/app/data/verb-form-vocab.txt")
GEC_MODEL = GECToR.from_pretrained(GEC_MODEL_ID).to(GEC_DEVICE)
GEC_TOKENIZER = AutoTokenizer.from_pretrained(GEC_MODEL_ID)
GEC_ENCODE, GEC_DECODE = load_verb_dict(VERB_DICT_PATH)
print(f"[GECToR] Model & verb dict loaded: {GEC_MODEL_ID}")
except Exception as e:
print(f"[GECToR] Failed to load. Error: {e}")
GEC_MODEL = None
GEC_TOKENIZER = None
GEC_ENCODE = None
GEC_DECODE = None
else:
print("[GECToR] Library not available; skipping neural GEC.")
def gector_correct(text: str):
"""
Run neural grammatical error correction using GECToR (gotutiyan implementation).
"""
if GEC_MODEL is None or GEC_TOKENIZER is None or GEC_ENCODE is None or GEC_DECODE is None:
print("[GECToR] Model not loaded, skipping.")
return text, 0, len(text.split()) if text.strip() else 0
parts = text.strip().split()
# Safety truncate (protect server)
if len(parts) > 1000:
text_proc = " ".join(parts[:1000])
else:
text_proc = text.strip()
if not text_proc:
return text_proc, 0, 0
srcs = [text_proc]
try:
corrected_list = gector_predict(
GEC_MODEL,
GEC_TOKENIZER,
srcs,
GEC_ENCODE,
GEC_DECODE,
keep_confidence=0.0,
min_error_prob=0.0,
n_iteration=5,
batch_size=2,
)
corrected_text = corrected_list[0]
orig_tokens = text_proc.split()
corr_tokens = corrected_text.split()
corrections = sum(1 for a, b in zip(orig_tokens, corr_tokens) if a != b)
original_words = len(orig_tokens)
return corrected_text, corrections, original_words
except Exception as e:
print(f"[GECToR] Prediction error: {e}")
return text_proc, 0, len(text_proc.split())
# ------------------ FILE EXTRACTION HELPERS ------------------
MAX_FILE_SIZE = 15 * 1024 * 1024 # 15 MB
def extract_text_from_upload(upload: UploadFile) -> str:
filename = (upload.filename or "").lower()
content_type = (upload.content_type or "").lower()
data = upload.file.read()
try:
upload.file.seek(0)
except Exception:
pass
if len(data) > MAX_FILE_SIZE:
raise HTTPException(status_code=413, detail="File too large (max 15MB)")
# TXT
if filename.endswith(".txt") or content_type == "text/plain":
try:
try:
return data.decode("utf-8")
except UnicodeDecodeError:
return data.decode("latin-1")
except Exception as e:
raise HTTPException(status_code=400, detail=f"Failed to decode text file: {e}")
# DOCX
if filename.endswith(".docx") or "wordprocessingml" in content_type:
# Basic sanity check: valid .docx is a ZIP (PK header)
if not data.startswith(b"PK"):
raise HTTPException(
status_code=400,
detail="Uploaded file is not a valid .docx package (it might be an old .doc file or a corrupted document). "
"Please open it in Word/Google Docs and re-save as .docx or export as PDF, then upload again."
)
try:
f = io.BytesIO(data)
doc = DocxDocument(f)
paragraphs = [p.text for p in doc.paragraphs]
text = "\n".join(paragraphs).strip()
if not text:
raise ValueError("DOCX contained no readable text.")
return text
except Exception as e:
raise HTTPException(
status_code=400,
detail=f"Failed to parse docx file: {e}. Try opening it in Word/Google Docs and exporting again as .docx or PDF."
)
# PDF
if filename.endswith(".pdf") or "pdf" in content_type:
try:
f = io.BytesIO(data)
reader = PyPDF2.PdfReader(f)
texts = []
for pg in range(len(reader.pages)):
try:
txt = reader.pages[pg].extract_text() or ""
except Exception:
txt = ""
texts.append(txt)
return "\n".join(texts)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Failed to parse PDF file: {e}")
raise HTTPException(
status_code=415,
detail="Unsupported file type. Use .txt, .pdf, or .docx",
)
# ------------------ GRAMMAR (LANGUAGETOOL INTEGRATION) ------------------
lt_tool = None
if language_tool_python is not None:
try:
lt_tool = language_tool_python.LanguageTool("en-US")
print("[LanguageTool] Loaded (local Java-backed checker)")
except Exception as e:
lt_tool = None
print("[LanguageTool] Could not start local LanguageTool β falling back. Error:", e)
else:
print("[LanguageTool] library not installed; falling back to heuristics.")
def grammar_with_languagetool(text: str):
parts = text.strip().split()
if len(parts) > 1000:
text_proc = " ".join(parts[:1000])
else:
text_proc = text.strip()
matches = lt_tool.check(text_proc)
corrected = language_tool_python.utils.correct(text_proc, matches)
corrections = len(matches)
return corrected, corrections, len(text_proc.split())
# ------------------ PLAGIARISM HELPERS (COMBINED ENGINE) ------------------
def _clean_for_jaccard(t: str):
t = t.lower()
t = re.sub(r"[^a-z0-9\s]", " ", t)
return [w for w in t.split() if w]
def _jaccard_similarity(a, b):
sa = set(a)
sb = set(b)
if not sa or not sb:
return 0.0
return len(sa & sb) / len(sa | sb)
def demo_plagiarism_fallback(text: str):
"""
Simple Jaccard-based fallback using a tiny built-in sample set.
Used when no TF-IDF / semantic corpus is available.
"""
SAMPLE_DOCS = [
{"title": "AI for Social Good",
"text": "Artificial intelligence is transforming multiple industries by automating routine tasks and enabling data driven decision making for social impact and efficiency."},
{"title": "IoT in Smart Cities",
"text": "The Internet of Things connects sensors, devices, and cloud platforms to enable real time monitoring and control in smart cities including lighting, traffic, and waste management."},
{"title": "Climate & Renewable Energy",
"text": "Climate change is a critical global challenge that demands renewable energy, efficient resource management, and international cooperation to ensure a sustainable future."},
]
input_words = _clean_for_jaccard(text)
best_score = 0.0
matches = []
for doc in SAMPLE_DOCS:
doc_words = _clean_for_jaccard(doc["text"])
score = _jaccard_similarity(input_words, doc_words)
matches.append({"title": doc["title"], "score": round(score * 100, 2)})
if score > best_score:
best_score = score
matches.sort(key=lambda x: x["score"], reverse=True)
plagiarism_percent = round(best_score * 100, 2)
summary = f"Plagiarism estimate (demo Jaccard): {plagiarism_percent}%"
return {"plagiarism_percent": plagiarism_percent, "matches": matches[:5], "summary": summary}
def corpus_plagiarism_combined(text: str):
"""
Combined plagiarism score using:
- TF-IDF cosine similarity
- Semantic embedding cosine similarity (SentenceTransformers)
Returns dict matching API schema:
{ plagiarism_percent, matches, summary }
"""
if not corpus_texts:
raise ValueError("No corpus texts loaded")
sims_tfidf = None
sims_emb = None
words = text.split()
if len(words) > 3000:
text_proc = " ".join(words[:3000])
else:
text_proc = text
# TF-IDF similarity
if vectorizer is not None and corpus_tfidf is not None:
q = vectorizer.transform([text_proc])
sims_tfidf = cosine_similarity(q, corpus_tfidf)[0]
# Semantic similarity
if emb_model is not None and corpus_emb is not None:
q_emb = emb_model.encode(
[text_proc],
convert_to_numpy=True,
normalize_embeddings=True,
show_progress_bar=False,
)[0]
sims_emb = corpus_emb @ q_emb # normalized β dot = cosine
if sims_tfidf is None and sims_emb is None:
raise ValueError("No plagiarism backends (TF-IDF / embeddings) are available")
n_docs = len(corpus_texts)
combined_rows = []
alpha = PLAG_ALPHA # TF-IDF weight
for i in range(n_docs):
tf = float(sims_tfidf[i]) if sims_tfidf is not None else None
se = float(sims_emb[i]) if sims_emb is not None else None
if tf is None and se is None:
continue
if tf is not None and se is not None:
score = alpha * tf + (1.0 - alpha) * se
elif tf is not None:
score = tf
else:
score = se
combined_rows.append({
"index": i,
"combined": score,
"tfidf": tf,
"semantic": se,
})
if not combined_rows:
raise ValueError("No scores computed for corpus documents")
combined_rows.sort(key=lambda x: x["combined"], reverse=True)
top = combined_rows[:10]
best = top[0]["combined"]
plagiarism_percent = round(best * 100, 2)
matches = []
for row in top:
matches.append({
"title": corpus_titles[row["index"]],
"score": round(row["combined"] * 100, 2),
"tfidf_score": round(row["tfidf"] * 100, 2) if row["tfidf"] is not None else None,
"semantic_score": round(row["semantic"] * 100, 2) if row["semantic"] is not None else None,
})
components = []
if sims_tfidf is not None:
components.append("TF-IDF")
if sims_emb is not None:
components.append("semantic embeddings")
comp_str = " + ".join(components)
summary = f"Plagiarism estimate (combined {comp_str}): {plagiarism_percent}%"
return {"plagiarism_percent": plagiarism_percent, "matches": matches, "summary": summary}
# ------------------ ENDPOINTS ------------------
@app.post("/api/signup")
def signup(req: SignupRequest):
cur.execute("SELECT id FROM users WHERE email = ?", (req.email,))
if cur.fetchone():
raise HTTPException(status_code=400, detail="Email already registered")
pw_hash = hash_password(req.password)
created_at = now_iso()
cur.execute(
"INSERT INTO users (name, email, password_hash, created_at) VALUES (?, ?, ?, ?)",
(req.name, req.email, pw_hash, created_at),
)
conn.commit()
user_id = cur.lastrowid
token = create_token(user_id, req.email)
return {
"message": "Signup successful",
"token": token,
"name": req.name,
"email": req.email,
}
@app.post("/api/login")
def login(req: LoginRequest):
cur.execute("SELECT * FROM users WHERE email = ?", (req.email,))
row = cur.fetchone()
if not row or not verify_password(req.password, row["password_hash"]):
raise HTTPException(status_code=401, detail="Invalid email or password")
token = create_token(row["id"], row["email"])
return {
"message": "Login successful",
"token": token,
"name": row["name"],
"email": row["email"],
}
@app.post("/api/grammar-check")
def api_grammar_check(req: TextRequest, user=Depends(get_current_user)):
text = req.text or ""
if not text.strip():
raise HTTPException(status_code=400, detail="Text is required")
# Prefer GECToR β LanguageTool β heuristics
if GEC_MODEL is not None:
corrected, corrections, original_words = gector_correct(text)
summary = f"GECToR neural GEC: {corrections} edits; words analysed: {original_words}"
elif lt_tool is not None:
corrected, corrections, original_words = grammar_with_languagetool(text)
summary = f"LanguageTool corrections: {corrections}; words analysed: {original_words}"
else:
corrected, corrections, original_words = simple_grammar_correct(text)
summary = f"HEURISTIC corrections: {corrections}; words analysed: {original_words}"
save_history(user["id"], "grammar", text, summary)
return {
"original_words": original_words,
"corrections": corrections,
"corrected_text": corrected,
"summary": summary,
}
@app.post("/api/grammar-check-file")
def api_grammar_check_file(file: UploadFile = File(...), user=Depends(get_current_user)):
text = extract_text_from_upload(file).strip()
if not text:
raise HTTPException(status_code=400, detail="Uploaded file contains no text")
if GEC_MODEL is not None:
corrected, corrections, original_words = gector_correct(text)
summary = f"GECToR neural GEC: {corrections} edits; words analysed: {original_words}"
elif lt_tool is not None:
corrected, corrections, original_words = grammar_with_languagetool(text)
summary = f"LanguageTool corrections: {corrections}; words analysed: {original_words}"
else:
parts = text.strip().split()
if len(parts) > 1000:
text = " ".join(parts[:1000])
corrected, corrections, original_words = simple_grammar_correct(text)
summary = f"HEURISTIC corrections: {corrections}; words analysed: {original_words}"
save_history(user["id"], "grammar", text, summary)
return {
"original_words": original_words,
"corrections": corrections,
"corrected_text": corrected,
"summary": summary,
}
# ------------------ PLAGIARISM ENDPOINTS (COMBINED) ------------------
@app.post("/api/plagiarism-check")
def api_plagiarism_check(req: TextRequest, user=Depends(get_current_user)):
text = req.text or ""
if not text.strip():
raise HTTPException(status_code=400, detail="Text is required")
# First try full combined engine (TF-IDF + embeddings) with corpus
try:
result = corpus_plagiarism_combined(text)
save_history(user["id"], "plagiarism", text, result["summary"])
return result
except Exception as e:
print("[Plagiarism] Combined corpus engine failed, falling back to demo:", e)
# Fallback: small Jaccard demo
result = demo_plagiarism_fallback(text)
save_history(user["id"], "plagiarism", text, result["summary"])
return result
@app.post("/api/plagiarism-check-file")
def api_plagiarism_check_file(file: UploadFile = File(...), user=Depends(get_current_user)):
text = extract_text_from_upload(file).strip()
if not text:
raise HTTPException(status_code=400, detail="Uploaded file contains no text")
try:
result = corpus_plagiarism_combined(text)
save_history(user["id"], "plagiarism", text, result["summary"])
return result
except Exception as e:
print("[Plagiarism-file] Combined corpus engine failed, falling back to demo:", e)
# Fallback to demo if corpus/engines unavailable
result = demo_plagiarism_fallback(text)
save_history(user["id"], "plagiarism", text, result["summary"])
return result
# ------------------ AI CHECK (TEXT & FILE) ------------------
def heuristic_ai_score(text: str):
words = re.sub(r"[^a-z0-9\s]", " ", text.lower()).split()
word_count = len(words)
unique_ratio = len(set(words)) / (word_count or 1)
sentences = [s.strip() for s in re.split(r"[.!?]+", text) if s.strip()]
avg_sentence_length = word_count / (len(sentences) or 1)
ai_score = 0
if unique_ratio < 0.45:
ai_score += 40
elif unique_ratio < 0.6:
ai_score += 20
if avg_sentence_length > 25:
ai_score += 40
elif avg_sentence_length > 18:
ai_score += 25
if word_count > 400:
ai_score += 10
ai_score = min(100, round(ai_score))
human_score = 100 - ai_score
return ai_score, human_score, word_count, avg_sentence_length, unique_ratio
@app.post("/api/ai-check")
def api_ai_check(req: TextRequest, user=Depends(get_current_user)):
text = (req.text or "").strip()
if not text:
raise HTTPException(status_code=400, detail="Text is required")
if model is not None and tokenizer is not None:
try:
max_len = getattr(tokenizer, "model_max_length", 512)
if max_len is None or max_len > 1024:
max_len = 512
words = text.split()
chunk_size = min(400, max_len - 10)
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
probs = []
for chunk in chunks:
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=max_len)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
p = torch.softmax(logits, dim=1).cpu().numpy()[0]
ai_prob = float(p[1]) if p.shape[0] > 1 else float(p[0])
probs.append(ai_prob)
avg_ai_prob = float(np.mean(probs)) if probs else 0.0
ai_percent = round(avg_ai_prob * 100, 2)
human_percent = round(100 - ai_percent, 2)
words_count = len(words)
sentences = [s.strip() for s in re.split(r"[.!?]+", text) if s.strip()]
avg_sentence_len = round(words_count / (len(sentences) or 1), 2)
summary = f"Model: {AI_DETECTOR_MODEL}; AI probability: {ai_percent}%"
save_history(user["id"], "ai", text, summary)
return {
"ai_percent": ai_percent,
"human_percent": human_percent,
"word_count": words_count,
"avg_sentence_length": avg_sentence_len,
"summary": summary,
}
except Exception as e:
print("[AI-check] model inference failed:", e)
ai_percent, human_percent, wc, avg_len, uniq = heuristic_ai_score(text)
summary = f"HEURISTIC fallback β AI probability: {ai_percent}%"
save_history(user["id"], "ai", text, summary)
return {
"ai_percent": ai_percent,
"human_percent": human_percent,
"word_count": wc,
"avg_sentence_length": avg_len,
"unique_ratio": round(uniq, 3),
"summary": summary,
}
@app.post("/api/ai-check-file")
def api_ai_check_file(file: UploadFile = File(...), user=Depends(get_current_user)):
text = extract_text_from_upload(file).strip()
if not text:
raise HTTPException(status_code=400, detail="Uploaded file contains no text")
return api_ai_check.__wrapped__(TextRequest(text=text), user)
# ------------------ HISTORY ------------------
@app.get("/api/history")
def api_history(user=Depends(get_current_user)):
cur.execute(
"SELECT id, tool, input_text, result_summary, created_at "
"FROM history WHERE user_id = ? "
"ORDER BY created_at DESC LIMIT 50",
(user["id"],),
)
rows = cur.fetchall()
items = []
for r in rows:
items.append(
{
"id": r["id"],
"tool": r["tool"],
"input_text": r["input_text"],
"summary": r["result_summary"],
"created_at": r["created_at"],
}
)
return {"items": items}
# ------------------ NEW: PDF REPORT ENDPOINTS ------------------
# These endpoints run the same checks you already have and format results into the PDF template
# using pdf_reports.generate_report (pixel-perfect Duplichecker-style).
@app.get("/report/grammar")
def report_grammar_get(text: str = "", user=Depends(get_current_user)):
"""
Generate Grammar Report PDF from query param text.
If you prefer file upload, use POST /report/grammar-file
"""
if not text.strip():
raise HTTPException(status_code=400, detail="Text is required for report")
# run the same grammar logic
if GEC_MODEL is not None:
corrected, corrections, original_words = gector_correct(text)
summary = f"GECToR neural GEC: {corrections} edits; words analysed: {original_words}"
elif lt_tool is not None:
corrected, corrections, original_words = grammar_with_languagetool(text)
summary = f"LanguageTool corrections: {corrections}; words analysed: {original_words}"
else:
corrected, corrections, original_words = simple_grammar_correct(text)
summary = f"HEURISTIC corrections: {corrections}; words analysed: {original_words}"
save_history(user["id"], "grammar", text, summary)
# Prepare the PDF payload using same visual template
tiles = [
{'value': str(corrections), 'label': 'Errors'},
{'value': '-', 'label': 'Warnings'},
{'value': '-', 'label': 'Suggestions'},
{'value': 'β', 'label': 'Readability'}
]
counts = {
'Words': str(original_words),
'Characters': str(len(text)),
'Sentences': str(len([s for s in re.split(r"[.!?]+", text) if s.strip()])),
'Paragraphs': str(len([p for p in text.split("\n") if p.strip()])),
'Read Time': f"{max(1, original_words//200)} minute(s)"
}
sections = [
{'heading': 'Summary', 'paragraphs': [
"This Grammar Report lists detected grammar issues and suggestions.",
{'text': f"Corrections suggested: {corrections}", 'highlight': 'yellow' if corrections > 0 else None},
{'text': corrected, 'highlight': None}
]},
{'heading': 'Document', 'paragraphs': [text]}
]
matched_sources = [] # grammar report does not need matched sources by default
footer = "Grammar suggestions are automated. Review before applying changes."
pdf_path = generate_report("grammar", out_dir="/tmp",
title_text="Grammar Report",
tiles=tiles, counts=counts, sections=sections,
matched_sources=matched_sources, footer_text=footer)
return FileResponse(pdf_path, media_type="application/pdf", filename="TrueWrite_GrammarReport.pdf")
@app.post("/report/grammar-file")
def report_grammar_file(file: UploadFile = File(...), user=Depends(get_current_user)):
text = extract_text_from_upload(file).strip()
if not text:
raise HTTPException(status_code=400, detail="Uploaded file contains no text")
# reuse above logic to create report
if GEC_MODEL is not None:
corrected, corrections, original_words = gector_correct(text)
summary = f"GECToR neural GEC: {corrections} edits; words analysed: {original_words}"
elif lt_tool is not None:
corrected, corrections, original_words = grammar_with_languagetool(text)
summary = f"LanguageTool corrections: {corrections}; words analysed: {original_words}"
else:
corrected, corrections, original_words = simple_grammar_correct(text)
summary = f"HEURISTIC corrections: {corrections}; words analysed: {original_words}"
save_history(user["id"], "grammar", text, summary)
tiles = [
{'value': str(corrections), 'label': 'Errors'},
{'value': '-', 'label': 'Warnings'},
{'value': '-', 'label': 'Suggestions'},
{'value': 'β', 'label': 'Readability'}
]
counts = {
'Words': str(original_words),
'Characters': str(len(text)),
'Sentences': str(len([s for s in re.split(r"[.!?]+", text) if s.strip()])),
'Paragraphs': str(len([p for p in text.split("\n") if p.strip()])),
'Read Time': f"{max(1, original_words//200)} minute(s)"
}
sections = [
{'heading': 'Summary', 'paragraphs': [
"This Grammar Report lists detected grammar issues and suggestions.",
{'text': f"Corrections suggested: {corrections}", 'highlight': 'yellow' if corrections > 0 else None},
{'text': corrected, 'highlight': None}
]},
{'heading': 'Document', 'paragraphs': [text]}
]
matched_sources = []
footer = "Grammar suggestions are automated. Review before applying changes."
pdf_path = generate_report("grammar", out_dir="/tmp",
title_text="Grammar Report",
tiles=tiles, counts=counts, sections=sections,
matched_sources=matched_sources, footer_text=footer)
return FileResponse(pdf_path, media_type="application/pdf", filename="TrueWrite_GrammarReport.pdf")
@app.get("/report/plagiarism")
def report_plagiarism_get(text: str = "", user=Depends(get_current_user)):
"""
Generate Plagiarism Report PDF from query param text.
If you prefer file upload, use POST /report/plagiarism-file
"""
if not text.strip():
raise HTTPException(status_code=400, detail="Text is required for report")
# reuse the plagiarism check logic
try:
result = corpus_plagiarism_combined(text)
except Exception:
result = demo_plagiarism_fallback(text)
save_history(user["id"], "plagiarism", text, result.get("summary", ""))
# Build tiles and matched_sources for PDF
plag_percent = f"{result.get('plagiarism_percent', 0)}%"
top_matches = result.get("matches", [])[:5]
tiles = [
{'value': plag_percent, 'label': 'Plagiarism'},
{'value': f"{top_matches[0]['score']}%" if top_matches else '0%', 'label': 'Top Match'},
{'value': '-', 'label': 'Partial Match'},
{'value': f"{100 - float(result.get('plagiarism_percent', 0))}%", 'label': 'Unique'}
]
counts = {
'Words': str(count_words(text)),
'Characters': str(len(text)),
'Sentences': str(len([s for s in re.split(r"[.!?]+", text) if s.strip()])),
'Paragraphs': str(len([p for p in text.split("\n") if p.strip()])),
'Read Time': f"{max(1, count_words(text)//200)} minute(s)"
}
# Create sections; mark highest-match sentences as highlighted (simple heuristic)
sections = [
{'heading': 'Summary', 'paragraphs': [
result.get("summary", "Plagiarism analysis completed."),
"Top matches are listed below."
]},
{'heading': 'Document', 'paragraphs': [text]}
]
matched_sources = []
for m in top_matches:
matched_sources.append({
'title': m.get('title') or m.get('source', 'Source'),
'url': m.get('url') or '',
'similarity': f"{m.get('score', 0)}%"
})
footer = "Plagiarism detection results are estimates. Review sources for exact matches."
pdf_path = generate_report("plagiarism", out_dir="/tmp",
title_text="Plagiarism Report",
tiles=tiles, counts=counts, sections=sections,
matched_sources=matched_sources, footer_text=footer)
return FileResponse(pdf_path, media_type="application/pdf", filename="TrueWrite_PlagiarismReport.pdf")
@app.post("/report/plagiarism-file")
def report_plagiarism_file(file: UploadFile = File(...), user=Depends(get_current_user)):
text = extract_text_from_upload(file).strip()
if not text:
raise HTTPException(status_code=400, detail="Uploaded file contains no text")
try:
result = corpus_plagiarism_combined(text)
except Exception:
result = demo_plagiarism_fallback(text)
save_history(user["id"], "plagiarism", text, result.get("summary", ""))
plag_percent = f"{result.get('plagiarism_percent', 0)}%"
top_matches = result.get("matches", [])[:5]
tiles = [
{'value': plag_percent, 'label': 'Plagiarism'},
{'value': f"{top_matches[0]['score']}%" if top_matches else '0%', 'label': 'Top Match'},
{'value': '-', 'label': 'Partial Match'},
{'value': f"{100 - float(result.get('plagiarism_percent', 0))}%", 'label': 'Unique'}
]
counts = {
'Words': str(count_words(text)),
'Characters': str(len(text)),
'Sentences': str(len([s for s in re.split(r"[.!?]+", text) if s.strip()])),
'Paragraphs': str(len([p for p in text.split("\n") if p.strip()])),
'Read Time': f"{max(1, count_words(text)//200)} minute(s)"
}
sections = [
{'heading': 'Summary', 'paragraphs': [
result.get("summary", "Plagiarism analysis completed."),
"Top matches are listed below."
]},
{'heading': 'Document', 'paragraphs': [text]}
]
matched_sources = []
for m in top_matches:
matched_sources.append({
'title': m.get('title') or m.get('source', 'Source'),
'url': m.get('url') or '',
'similarity': f"{m.get('score', 0)}%"
})
footer = "Plagiarism detection results are estimates. Review sources for exact matches."
pdf_path = generate_report("plagiarism", out_dir="/tmp",
title_text="Plagiarism Report",
tiles=tiles, counts=counts, sections=sections,
matched_sources=matched_sources, footer_text=footer)
return FileResponse(pdf_path, media_type="application/pdf", filename="TrueWrite_PlagiarismReport.pdf")
@app.get("/report/ai")
def report_ai_get(text: str = "", user=Depends(get_current_user)):
"""
Generate AI Content Report PDF from query param text.
If you prefer file upload, use POST /report/ai-file
"""
if not text.strip():
raise HTTPException(status_code=400, detail="Text is required for report")
# Reuse ai-check logic to compute ai_percent etc.
if model is not None and tokenizer is not None:
try:
max_len = getattr(tokenizer, "model_max_length", 512)
if max_len is None or max_len > 1024:
max_len = 512
words = text.split()
chunk_size = min(400, max_len - 10)
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
probs = []
for chunk in chunks:
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=max_len)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
p = torch.softmax(logits, dim=1).cpu().numpy()[0]
ai_prob = float(p[1]) if p.shape[0] > 1 else float(p[0])
probs.append(ai_prob)
avg_ai_prob = float(np.mean(probs)) if probs else 0.0
ai_percent = round(avg_ai_prob * 100, 2)
human_percent = round(100 - ai_percent, 2)
words_count = len(words)
sentences = [s.strip() for s in re.split(r"[.!?]+", text) if s.strip()]
avg_sentence_len = round(words_count / (len(sentences) or 1), 2)
summary = f"Model: {AI_DETECTOR_MODEL}; AI probability: {ai_percent}%"
except Exception as e:
print("[AI-report] model inference failed:", e)
ai_percent, human_percent, wc, avg_len, uniq = heuristic_ai_score(text)
ai_percent = ai_percent
human_percent = human_percent
words_count = wc
avg_sentence_len = avg_len
summary = f"HEURISTIC fallback β AI probability: {ai_percent}%"
else:
ai_percent, human_percent, wc, avg_len, uniq = heuristic_ai_score(text)
ai_percent = ai_percent
human_percent = human_percent
words_count = wc
avg_sentence_len = avg_len
summary = f"HEURISTIC fallback β AI probability: {ai_percent}%"
save_history(user["id"], "ai", text, summary)
tiles = [
{'value': f"{ai_percent}%", 'label': 'AI Likelihood'},
{'value': '-', 'label': 'Plagiarism'},
{'value': '-', 'label': 'Human-Like'},
{'value': f"{human_percent}%", 'label': 'Human Likelihood'}
]
counts = {
'Words': str(words_count),
'Characters': str(len(text)),
'Sentences': str(len([s for s in re.split(r"[.!?]+", text) if s.strip()])),
'Paragraphs': str(len([p for p in text.split("\n") if p.strip()])),
'Avg Sentence Len': str(avg_sentence_len)
}
sections = [
{'heading': 'Executive Summary', 'paragraphs': [
summary,
{'text': "This AI Content Report analyses the likelihood that portions of the submitted text were generated by AI.", 'highlight': None}
]},
{'heading': 'Document Body', 'paragraphs': [text]}
]
matched_sources = [] # optional for AI report; kept empty here
footer = "AI detection is probabilistic. Use results as guidance."
pdf_path = generate_report("ai", out_dir="/tmp",
title_text="AI Content Report",
tiles=tiles, counts=counts, sections=sections,
matched_sources=matched_sources, footer_text=footer)
return FileResponse(pdf_path, media_type="application/pdf", filename="TrueWrite_AiReport.pdf")
@app.post("/report/ai-file")
def report_ai_file(file: UploadFile = File(...), user=Depends(get_current_user)):
text = extract_text_from_upload(file).strip()
if not text:
raise HTTPException(status_code=400, detail="Uploaded file contains no text")
# reuse logic above (heuristic or model)
if model is not None and tokenizer is not None:
try:
max_len = getattr(tokenizer, "model_max_length", 512)
if max_len is None or max_len > 1024:
max_len = 512
words = text.split()
chunk_size = min(400, max_len - 10)
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
probs = []
for chunk in chunks:
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=max_len)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
p = torch.softmax(logits, dim=1).cpu().numpy()[0]
ai_prob = float(p[1]) if p.shape[0] > 1 else float(p[0])
probs.append(ai_prob)
avg_ai_prob = float(np.mean(probs)) if probs else 0.0
ai_percent = round(avg_ai_prob * 100, 2)
human_percent = round(100 - ai_percent, 2)
words_count = len(words)
sentences = [s.strip() for s in re.split(r"[.!?]+", text) if s.strip()]
avg_sentence_len = round(words_count / (len(sentences) or 1), 2)
summary = f"Model: {AI_DETECTOR_MODEL}; AI probability: {ai_percent}%"
except Exception as e:
print("[AI-report-file] model inference failed:", e)
ai_percent, human_percent, wc, avg_len, uniq = heuristic_ai_score(text)
ai_percent = ai_percent
human_percent = human_percent
words_count = wc
avg_sentence_len = avg_len
summary = f"HEURISTIC fallback β AI probability: {ai_percent}%"
else:
ai_percent, human_percent, wc, avg_len, uniq = heuristic_ai_score(text)
ai_percent = ai_percent
human_percent = human_percent
words_count = wc
avg_sentence_len = avg_len
summary = f"HEURISTIC fallback β AI probability: {ai_percent}%"
save_history(user["id"], "ai", text, summary)
tiles = [
{'value': f"{ai_percent}%", 'label': 'AI Likelihood'},
{'value': '-', 'label': 'Plagiarism'},
{'value': '-', 'label': 'Human-Like'},
{'value': f"{human_percent}%", 'label': 'Human Likelihood'}
]
counts = {
'Words': str(words_count),
'Characters': str(len(text)),
'Sentences': str(len([s for s in re.split(r"[.!?]+", text) if s.strip()])),
'Paragraphs': str(len([p for p in text.split("\n") if p.strip()])),
'Avg Sentence Len': str(avg_sentence_len)
}
sections = [
{'heading': 'Executive Summary', 'paragraphs': [
summary,
{'text': "This AI Content Report analyses the likelihood that portions of the submitted text were generated by AI.", 'highlight': None}
]},
{'heading': 'Document Body', 'paragraphs': [text]}
]
matched_sources = []
footer = "AI detection is probabilistic. Use results as guidance."
pdf_path = generate_report("ai", out_dir="/tmp",
title_text="AI Content Report",
tiles=tiles, counts=counts, sections=sections,
matched_sources=matched_sources, footer_text=footer)
return FileResponse(pdf_path, media_type="application/pdf", filename="TrueWrite_AiReport.pdf")
@app.get("/")
def read_root():
return {"status": "Backend is running with GECToR + 16GB RAM!"}
|