Spaces:
Running
Running
Fix auth
Browse files
app.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -18,10 +18,11 @@
|
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"cell_type": "code",
|
| 21 |
-
"execution_count":
|
| 22 |
"metadata": {},
|
| 23 |
"outputs": [],
|
| 24 |
"source": [
|
|
|
|
| 25 |
"if Path(\".env\").is_file():\n",
|
| 26 |
" load_dotenv(\".env\")\n",
|
| 27 |
"\n",
|
|
@@ -30,7 +31,7 @@
|
|
| 30 |
},
|
| 31 |
{
|
| 32 |
"cell_type": "code",
|
| 33 |
-
"execution_count":
|
| 34 |
"metadata": {},
|
| 35 |
"outputs": [],
|
| 36 |
"source": [
|
|
@@ -42,7 +43,7 @@
|
|
| 42 |
" top_p\n",
|
| 43 |
"):\n",
|
| 44 |
" API_URL = f\"https://api-inference.huggingface.co/models/{model_id}\"\n",
|
| 45 |
-
" headers = {\"Authorization\": \"Bearer \", \"x-wait-for-model\": \"1\"}\n",
|
| 46 |
"\n",
|
| 47 |
" payload = {\n",
|
| 48 |
" \"inputs\": inputs,\n",
|
|
@@ -64,16 +65,16 @@
|
|
| 64 |
},
|
| 65 |
{
|
| 66 |
"cell_type": "code",
|
| 67 |
-
"execution_count":
|
| 68 |
"metadata": {},
|
| 69 |
"outputs": [
|
| 70 |
{
|
| 71 |
"data": {
|
| 72 |
"text/plain": [
|
| 73 |
-
"[{'generated_text': '
|
| 74 |
]
|
| 75 |
},
|
| 76 |
-
"execution_count":
|
| 77 |
"metadata": {},
|
| 78 |
"output_type": "execute_result"
|
| 79 |
}
|
|
@@ -86,7 +87,7 @@
|
|
| 86 |
},
|
| 87 |
{
|
| 88 |
"cell_type": "code",
|
| 89 |
-
"execution_count":
|
| 90 |
"metadata": {},
|
| 91 |
"outputs": [],
|
| 92 |
"source": [
|
|
@@ -100,7 +101,7 @@
|
|
| 100 |
},
|
| 101 |
{
|
| 102 |
"cell_type": "code",
|
| 103 |
-
"execution_count":
|
| 104 |
"metadata": {},
|
| 105 |
"outputs": [],
|
| 106 |
"source": [
|
|
@@ -129,6 +130,14 @@
|
|
| 129 |
" return {chatbot: chat, state: history}\n"
|
| 130 |
]
|
| 131 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
{
|
| 133 |
"cell_type": "code",
|
| 134 |
"execution_count": 6,
|
|
@@ -644,9 +653,17 @@
|
|
| 644 |
" json.dump({\"prompt\": template}, f)"
|
| 645 |
]
|
| 646 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 647 |
{
|
| 648 |
"cell_type": "code",
|
| 649 |
-
"execution_count":
|
| 650 |
"metadata": {},
|
| 651 |
"outputs": [],
|
| 652 |
"source": [
|
|
@@ -678,14 +695,14 @@
|
|
| 678 |
},
|
| 679 |
{
|
| 680 |
"cell_type": "code",
|
| 681 |
-
"execution_count":
|
| 682 |
"metadata": {},
|
| 683 |
"outputs": [
|
| 684 |
{
|
| 685 |
"name": "stdout",
|
| 686 |
"output_type": "stream",
|
| 687 |
"text": [
|
| 688 |
-
"Running on local URL: http://127.0.0.1:
|
| 689 |
"\n",
|
| 690 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 691 |
]
|
|
@@ -693,7 +710,7 @@
|
|
| 693 |
{
|
| 694 |
"data": {
|
| 695 |
"text/html": [
|
| 696 |
-
"<div><iframe src=\"http://127.0.0.1:
|
| 697 |
],
|
| 698 |
"text/plain": [
|
| 699 |
"<IPython.core.display.HTML object>"
|
|
@@ -706,25 +723,9 @@
|
|
| 706 |
"data": {
|
| 707 |
"text/plain": []
|
| 708 |
},
|
| 709 |
-
"execution_count":
|
| 710 |
"metadata": {},
|
| 711 |
"output_type": "execute_result"
|
| 712 |
-
},
|
| 713 |
-
{
|
| 714 |
-
"name": "stderr",
|
| 715 |
-
"output_type": "stream",
|
| 716 |
-
"text": [
|
| 717 |
-
"Traceback (most recent call last):\n",
|
| 718 |
-
" File \"/Users/lewtun/miniconda3/envs/hf/lib/python3.8/site-packages/gradio/routes.py\", line 337, in run_predict\n",
|
| 719 |
-
" output = await app.get_blocks().process_api(\n",
|
| 720 |
-
" File \"/Users/lewtun/miniconda3/envs/hf/lib/python3.8/site-packages/gradio/blocks.py\", line 1018, in process_api\n",
|
| 721 |
-
" data = self.postprocess_data(fn_index, result[\"prediction\"], state)\n",
|
| 722 |
-
" File \"/Users/lewtun/miniconda3/envs/hf/lib/python3.8/site-packages/gradio/blocks.py\", line 924, in postprocess_data\n",
|
| 723 |
-
" predictions = convert_component_dict_to_list(\n",
|
| 724 |
-
" File \"/Users/lewtun/miniconda3/envs/hf/lib/python3.8/site-packages/gradio/blocks.py\", line 397, in convert_component_dict_to_list\n",
|
| 725 |
-
" raise ValueError(\n",
|
| 726 |
-
"ValueError: Returned component chatbot not specified as output of function.\n"
|
| 727 |
-
]
|
| 728 |
}
|
| 729 |
],
|
| 730 |
"source": [
|
|
@@ -761,9 +762,9 @@
|
|
| 761 |
" interactive=True,\n",
|
| 762 |
" )\n",
|
| 763 |
" temperature = gr.Slider(\n",
|
| 764 |
-
" minimum=0.
|
| 765 |
" maximum=3.0,\n",
|
| 766 |
-
" value=
|
| 767 |
" step=0.1,\n",
|
| 768 |
" interactive=True,\n",
|
| 769 |
" label=\"Temperature\",\n",
|
|
@@ -772,7 +773,7 @@
|
|
| 772 |
" top_p = gr.Slider(\n",
|
| 773 |
" minimum=-0,\n",
|
| 774 |
" maximum=1.0,\n",
|
| 775 |
-
" value=0.
|
| 776 |
" step=0.05,\n",
|
| 777 |
" interactive=True,\n",
|
| 778 |
" label=\"Top-p (nucleus sampling)\",\n",
|
|
@@ -828,14 +829,14 @@
|
|
| 828 |
},
|
| 829 |
{
|
| 830 |
"cell_type": "code",
|
| 831 |
-
"execution_count":
|
| 832 |
"metadata": {},
|
| 833 |
"outputs": [
|
| 834 |
{
|
| 835 |
"name": "stdout",
|
| 836 |
"output_type": "stream",
|
| 837 |
"text": [
|
| 838 |
-
"Closing server running on port:
|
| 839 |
]
|
| 840 |
}
|
| 841 |
],
|
|
@@ -845,7 +846,7 @@
|
|
| 845 |
},
|
| 846 |
{
|
| 847 |
"cell_type": "code",
|
| 848 |
-
"execution_count":
|
| 849 |
"metadata": {},
|
| 850 |
"outputs": [],
|
| 851 |
"source": [
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"cell_type": "code",
|
| 21 |
+
"execution_count": 11,
|
| 22 |
"metadata": {},
|
| 23 |
"outputs": [],
|
| 24 |
"source": [
|
| 25 |
+
"# |export\n",
|
| 26 |
"if Path(\".env\").is_file():\n",
|
| 27 |
" load_dotenv(\".env\")\n",
|
| 28 |
"\n",
|
|
|
|
| 31 |
},
|
| 32 |
{
|
| 33 |
"cell_type": "code",
|
| 34 |
+
"execution_count": 3,
|
| 35 |
"metadata": {},
|
| 36 |
"outputs": [],
|
| 37 |
"source": [
|
|
|
|
| 43 |
" top_p\n",
|
| 44 |
"):\n",
|
| 45 |
" API_URL = f\"https://api-inference.huggingface.co/models/{model_id}\"\n",
|
| 46 |
+
" headers = {\"Authorization\": f\"Bearer {HF_TOKEN}\", \"x-wait-for-model\": \"1\"}\n",
|
| 47 |
"\n",
|
| 48 |
" payload = {\n",
|
| 49 |
" \"inputs\": inputs,\n",
|
|
|
|
| 65 |
},
|
| 66 |
{
|
| 67 |
"cell_type": "code",
|
| 68 |
+
"execution_count": 4,
|
| 69 |
"metadata": {},
|
| 70 |
"outputs": [
|
| 71 |
{
|
| 72 |
"data": {
|
| 73 |
"text/plain": [
|
| 74 |
+
"[{'generated_text': 'love'}]"
|
| 75 |
]
|
| 76 |
},
|
| 77 |
+
"execution_count": 4,
|
| 78 |
"metadata": {},
|
| 79 |
"output_type": "execute_result"
|
| 80 |
}
|
|
|
|
| 87 |
},
|
| 88 |
{
|
| 89 |
"cell_type": "code",
|
| 90 |
+
"execution_count": 5,
|
| 91 |
"metadata": {},
|
| 92 |
"outputs": [],
|
| 93 |
"source": [
|
|
|
|
| 101 |
},
|
| 102 |
{
|
| 103 |
"cell_type": "code",
|
| 104 |
+
"execution_count": 9,
|
| 105 |
"metadata": {},
|
| 106 |
"outputs": [],
|
| 107 |
"source": [
|
|
|
|
| 130 |
" return {chatbot: chat, state: history}\n"
|
| 131 |
]
|
| 132 |
},
|
| 133 |
+
{
|
| 134 |
+
"attachments": {},
|
| 135 |
+
"cell_type": "markdown",
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"source": [
|
| 138 |
+
"## Prompt templates"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
{
|
| 142 |
"cell_type": "code",
|
| 143 |
"execution_count": 6,
|
|
|
|
| 653 |
" json.dump({\"prompt\": template}, f)"
|
| 654 |
]
|
| 655 |
},
|
| 656 |
+
{
|
| 657 |
+
"attachments": {},
|
| 658 |
+
"cell_type": "markdown",
|
| 659 |
+
"metadata": {},
|
| 660 |
+
"source": [
|
| 661 |
+
"## App"
|
| 662 |
+
]
|
| 663 |
+
},
|
| 664 |
{
|
| 665 |
"cell_type": "code",
|
| 666 |
+
"execution_count": 5,
|
| 667 |
"metadata": {},
|
| 668 |
"outputs": [],
|
| 669 |
"source": [
|
|
|
|
| 695 |
},
|
| 696 |
{
|
| 697 |
"cell_type": "code",
|
| 698 |
+
"execution_count": 6,
|
| 699 |
"metadata": {},
|
| 700 |
"outputs": [
|
| 701 |
{
|
| 702 |
"name": "stdout",
|
| 703 |
"output_type": "stream",
|
| 704 |
"text": [
|
| 705 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
| 706 |
"\n",
|
| 707 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 708 |
]
|
|
|
|
| 710 |
{
|
| 711 |
"data": {
|
| 712 |
"text/html": [
|
| 713 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 714 |
],
|
| 715 |
"text/plain": [
|
| 716 |
"<IPython.core.display.HTML object>"
|
|
|
|
| 723 |
"data": {
|
| 724 |
"text/plain": []
|
| 725 |
},
|
| 726 |
+
"execution_count": 6,
|
| 727 |
"metadata": {},
|
| 728 |
"output_type": "execute_result"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
}
|
| 730 |
],
|
| 731 |
"source": [
|
|
|
|
| 762 |
" interactive=True,\n",
|
| 763 |
" )\n",
|
| 764 |
" temperature = gr.Slider(\n",
|
| 765 |
+
" minimum=0.0,\n",
|
| 766 |
" maximum=3.0,\n",
|
| 767 |
+
" value=0.5,\n",
|
| 768 |
" step=0.1,\n",
|
| 769 |
" interactive=True,\n",
|
| 770 |
" label=\"Temperature\",\n",
|
|
|
|
| 773 |
" top_p = gr.Slider(\n",
|
| 774 |
" minimum=-0,\n",
|
| 775 |
" maximum=1.0,\n",
|
| 776 |
+
" value=0.9,\n",
|
| 777 |
" step=0.05,\n",
|
| 778 |
" interactive=True,\n",
|
| 779 |
" label=\"Top-p (nucleus sampling)\",\n",
|
|
|
|
| 829 |
},
|
| 830 |
{
|
| 831 |
"cell_type": "code",
|
| 832 |
+
"execution_count": 7,
|
| 833 |
"metadata": {},
|
| 834 |
"outputs": [
|
| 835 |
{
|
| 836 |
"name": "stdout",
|
| 837 |
"output_type": "stream",
|
| 838 |
"text": [
|
| 839 |
+
"Closing server running on port: 7860\n"
|
| 840 |
]
|
| 841 |
}
|
| 842 |
],
|
|
|
|
| 846 |
},
|
| 847 |
{
|
| 848 |
"cell_type": "code",
|
| 849 |
+
"execution_count": 10,
|
| 850 |
"metadata": {},
|
| 851 |
"outputs": [],
|
| 852 |
"source": [
|
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
-
__all__ = ['title', 'description', 'query_chat_api', 'inference_chat']
|
| 5 |
|
| 6 |
# %% app.ipynb 0
|
| 7 |
import gradio as gr
|
|
@@ -13,6 +13,13 @@ from pathlib import Path
|
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# %% app.ipynb 2
|
| 17 |
def query_chat_api(
|
| 18 |
model_id,
|
|
@@ -21,7 +28,7 @@ def query_chat_api(
|
|
| 21 |
top_p
|
| 22 |
):
|
| 23 |
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
|
| 24 |
-
headers = {"Authorization": "Bearer ", "x-wait-for-model": "1"}
|
| 25 |
|
| 26 |
payload = {
|
| 27 |
"inputs": inputs,
|
|
@@ -66,7 +73,7 @@ def inference_chat(
|
|
| 66 |
return {chatbot: chat, state: history}
|
| 67 |
|
| 68 |
|
| 69 |
-
# %% app.ipynb
|
| 70 |
title = """<h1 align="center">Chatty Language Models</h1>"""
|
| 71 |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
|
| 72 |
|
|
@@ -91,7 +98,7 @@ So far, the following prompts are available:
|
|
| 91 |
As you can see, most of these prompts exceed the maximum context size of models like Flan-T5, so an error usually means the Inference API has timed out.
|
| 92 |
"""
|
| 93 |
|
| 94 |
-
# %% app.ipynb
|
| 95 |
with gr.Blocks(
|
| 96 |
css="""
|
| 97 |
.message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
|
|
@@ -124,9 +131,9 @@ with gr.Blocks(
|
|
| 124 |
interactive=True,
|
| 125 |
)
|
| 126 |
temperature = gr.Slider(
|
| 127 |
-
minimum=0.
|
| 128 |
maximum=3.0,
|
| 129 |
-
value=
|
| 130 |
step=0.1,
|
| 131 |
interactive=True,
|
| 132 |
label="Temperature",
|
|
@@ -135,7 +142,7 @@ with gr.Blocks(
|
|
| 135 |
top_p = gr.Slider(
|
| 136 |
minimum=-0,
|
| 137 |
maximum=1.0,
|
| 138 |
-
value=0.
|
| 139 |
step=0.05,
|
| 140 |
interactive=True,
|
| 141 |
label="Top-p (nucleus sampling)",
|
|
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
+
__all__ = ['HF_TOKEN', 'title', 'description', 'query_chat_api', 'inference_chat']
|
| 5 |
|
| 6 |
# %% app.ipynb 0
|
| 7 |
import gradio as gr
|
|
|
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
|
| 15 |
|
| 16 |
+
# %% app.ipynb 1
|
| 17 |
+
if Path(".env").is_file():
|
| 18 |
+
load_dotenv(".env")
|
| 19 |
+
|
| 20 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
# %% app.ipynb 2
|
| 24 |
def query_chat_api(
|
| 25 |
model_id,
|
|
|
|
| 28 |
top_p
|
| 29 |
):
|
| 30 |
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
|
| 31 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}", "x-wait-for-model": "1"}
|
| 32 |
|
| 33 |
payload = {
|
| 34 |
"inputs": inputs,
|
|
|
|
| 73 |
return {chatbot: chat, state: history}
|
| 74 |
|
| 75 |
|
| 76 |
+
# %% app.ipynb 15
|
| 77 |
title = """<h1 align="center">Chatty Language Models</h1>"""
|
| 78 |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
|
| 79 |
|
|
|
|
| 98 |
As you can see, most of these prompts exceed the maximum context size of models like Flan-T5, so an error usually means the Inference API has timed out.
|
| 99 |
"""
|
| 100 |
|
| 101 |
+
# %% app.ipynb 16
|
| 102 |
with gr.Blocks(
|
| 103 |
css="""
|
| 104 |
.message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
|
|
|
|
| 131 |
interactive=True,
|
| 132 |
)
|
| 133 |
temperature = gr.Slider(
|
| 134 |
+
minimum=0.0,
|
| 135 |
maximum=3.0,
|
| 136 |
+
value=0.5,
|
| 137 |
step=0.1,
|
| 138 |
interactive=True,
|
| 139 |
label="Temperature",
|
|
|
|
| 142 |
top_p = gr.Slider(
|
| 143 |
minimum=-0,
|
| 144 |
maximum=1.0,
|
| 145 |
+
value=0.9,
|
| 146 |
step=0.05,
|
| 147 |
interactive=True,
|
| 148 |
label="Top-p (nucleus sampling)",
|