File size: 5,597 Bytes
87a952c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python3
"""
Generate ablation study data for D3 line chart embeds.

This script generates CSV files for:
1. From scratch ablation - single learning rate schedule
2. Annealing ablation - comparison between main pretraining and ablation decay
"""

import pandas as pd
import numpy as np
import os

# Parameters
max_lr = 2e-4

def generate_from_scratch_schedule():
    """Generate from scratch learning rate schedule - goes to 100B tokens"""
    total_tokens = 100e9  # 100B tokens
    warmup_end = 0.05  # 5% of total tokens
    decay_start = 0.85  # 85% of total tokens
    
    schedule = []
    for i in range(1000):  # 1000 points for smooth curve
        progress = i / 999  # 0 to 1
        
        if progress < warmup_end:
            # Linear warmup
            lr = max_lr * (progress / warmup_end)
        elif progress < decay_start:
            # Plateau at max LR
            lr = max_lr
        else:
            # Linear decay to 0
            decay_progress = (progress - decay_start) / (1 - decay_start)
            lr = max_lr * (1 - decay_progress)
        
        tokens = progress * total_tokens
        schedule.append({
            'run_name': 'From scratch',
            'tokens': tokens,
            'learning_rate': lr
        })
    
    # Filter out points after learning rate reaches 0
    filtered_schedule = []
    for point in schedule:
        filtered_schedule.append(point)
        if point['learning_rate'] == 0 and len(filtered_schedule) > 1:
            break
    
    return filtered_schedule

def generate_annealing_schedules():
    """Generate annealing ablation schedules - goes to 11T tokens"""
    total_tokens = 11e12  # 11T tokens
    main_warmup_end = 0.012  # 1.2% of total tokens
    main_decay_start = 0.80  # 80% of total tokens
    main_end = 0.95  # 95% of total tokens
    
    # Ablation run parameters - start earlier so it reaches 0 at 7.1T
    ablation_start = 0.55  # Start earlier
    ablation_end = 0.645  # End at 7.1T (64.5% of 11T)
    
    schedules = []
    
    # Main pretraining run
    for i in range(1000):
        progress = i / 999
        
        if progress < main_warmup_end:
            lr = max_lr * (progress / main_warmup_end)
        elif progress < main_decay_start:
            lr = max_lr
        elif progress < main_end:
            # Linear decay
            decay_progress = (progress - main_decay_start) / (main_end - main_decay_start)
            lr = max_lr * (1 - decay_progress)
        else:
            lr = 0
        
        tokens = progress * total_tokens
        schedules.append({
            'run_name': 'Main pretraining',
            'tokens': tokens,
            'learning_rate': lr
        })
    
    # Ablation run (identical to main pretraining until decay starts at 7.1T)
    for i in range(1000):
        progress = i / 999
        
        if progress < main_warmup_end:
            # Same warmup as main pretraining
            lr = max_lr * (progress / main_warmup_end)
        elif progress < ablation_start:
            # Same plateau as main pretraining
            lr = max_lr
        elif progress < ablation_end:
            # Linear decay during ablation period (starts at 7.1T)
            decay_progress = (progress - ablation_start) / (ablation_end - ablation_start)
            lr = max_lr * (1 - decay_progress)
        else:
            lr = 0
        
        tokens = progress * total_tokens
        schedules.append({
            'run_name': 'Ablation decay',
            'tokens': tokens,
            'learning_rate': lr
        })
    
    # Filter out points after learning rate reaches 0 for each series
    filtered_schedules = []
    main_pretraining_data = [s for s in schedules if s['run_name'] == 'Main pretraining']
    ablation_decay_data = [s for s in schedules if s['run_name'] == 'Ablation decay']
    
    # Filter main pretraining - keep all points until 11T
    for point in main_pretraining_data:
        filtered_schedules.append(point)
        # Stop when learning rate reaches 0 (should be around 11T)
        if point['learning_rate'] == 0 and len([s for s in filtered_schedules if s['run_name'] == 'Main pretraining']) > 1:
            break
    
    # Filter ablation decay
    for point in ablation_decay_data:
        filtered_schedules.append(point)
        if point['learning_rate'] == 0 and len([s for s in filtered_schedules if s['run_name'] == 'Ablation decay']) > 1:
            break
    
    return filtered_schedules

def main():
    # Create output directory if it doesn't exist
    output_dir = "src/content/assets/data"
    os.makedirs(output_dir, exist_ok=True)
    
    print("Generating ablation study data...")
    
    # Generate from scratch schedule
    from_scratch_data = generate_from_scratch_schedule()
    df_from_scratch = pd.DataFrame(from_scratch_data)
    df_from_scratch.to_csv(f'{output_dir}/from_scratch_ablation.csv', index=False)
    print(f"✓ Saved {output_dir}/from_scratch_ablation.csv with {len(df_from_scratch)} rows")
    
    # Generate annealing schedules
    annealing_data = generate_annealing_schedules()
    df_annealing = pd.DataFrame(annealing_data)
    df_annealing.to_csv(f'{output_dir}/annealing_ablation.csv', index=False)
    print(f"✓ Saved {output_dir}/annealing_ablation.csv with {len(df_annealing)} rows")
    
    print("\n✓ Done! CSV files generated successfully.")
    print("\nNext steps:")
    print("1. Use from_scratch_ablation.csv for the first plot")
    print("2. Use annealing_ablation.csv for the second plot")

if __name__ == "__main__":
    main()