File size: 38,886 Bytes
32ef085
 
aff30bc
 
0c53c1b
c9ad6ed
 
 
 
 
5ea9a7f
c9ad6ed
aff30bc
 
 
 
 
 
 
 
 
ad78c1f
a7d8613
9b81dbc
cb81381
a071219
 
5ea9a7f
9b81dbc
a071219
 
 
 
 
9b81dbc
a071219
 
9b81dbc
a071219
 
 
cb81381
a071219
9b81dbc
 
ad78c1f
9b81dbc
 
 
 
 
a071219
9b81dbc
cb81381
9b81dbc
 
 
5ea9a7f
a7d8613
 
 
cb81381
aff30bc
 
 
 
 
 
 
 
ad78c1f
aff30bc
 
 
 
 
 
 
 
 
e22346a
aff30bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea9a7f
e22346a
aff30bc
 
e22346a
aff30bc
e22346a
 
aff30bc
e22346a
 
 
 
aff30bc
e22346a
 
 
 
 
 
 
5ea9a7f
32ef085
 
 
b192e3f
 
 
 
 
 
 
 
c9ad6ed
 
 
 
 
 
 
e22346a
c9ad6ed
e22346a
c9ad6ed
 
 
e22346a
c9ad6ed
 
 
 
 
 
 
 
 
 
 
e22346a
c9ad6ed
aff30bc
 
 
 
 
 
 
 
 
 
c9ad6ed
aff30bc
c9ad6ed
aff30bc
 
 
c9ad6ed
 
 
aff30bc
 
c9ad6ed
 
 
 
 
 
 
 
 
5ea9a7f
aff30bc
5ea9a7f
aff30bc
5ea9a7f
c9ad6ed
aff30bc
 
 
 
 
 
 
 
c9ad6ed
 
 
 
aff30bc
c9ad6ed
 
 
 
 
aff30bc
 
 
 
c9ad6ed
 
 
 
 
 
aff30bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea9a7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f574169
 
 
 
0c53c1b
 
60d9cea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c53c1b
60d9cea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c53c1b
60d9cea
 
 
 
 
 
 
 
 
 
 
 
 
0c53c1b
60d9cea
 
 
 
 
 
 
 
 
0c53c1b
60d9cea
 
 
 
 
 
 
0c53c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124


######################################   version  4  NER change done   #######################################################


import spaces
import gradio as gr
from PIL import Image
import numpy as np
import cv2
import re

def preprocess_image_for_ocr(image):
    image_rgb = image.convert("RGB")
    img_np = np.array(image_rgb)
    gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
    adaptive_threshold = cv2.adaptiveThreshold(
        gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 85, 11,
    )
    preprocessed_pil = Image.fromarray(adaptive_threshold)
    return preprocessed_pil




import re

def extract_medication_lines(text):
    """
    Extracts medication lines robustly:
    - Matches form as T./TAB./TAB/TABLET/TABLETS, C./CAP./CAP/CAPSULE/CAPSULES, etc.
    - Floating/slash doses (e.g., 2.5MG, 10/20MG)
    - Optional second form (prefix/suffix/mid)
    - Any case
    """
    # Comprehensive form pattern (optional . or plural S)
    form = r"(T\.?|TAB\.?|TABLET(S)?|C\.?|CAP\.?|CAPSULE(S)?|SYRUP(S)?|SYP|DROP(S)?|INJ\.?|INJECTION(S)?|OINTMENT(S)?|CREAM(S)?|GEL(S)?|PATCH(ES)?|SOL\.?|SOLUTION(S)?|ORAL)"
    name = r"([A-Z0-9\-/]+(?:\s+[A-Z0-9\-/]+){0,4})"
    opt_form = fr"(?:\s+{form})?"  # allow form at end as well
    # Dose: decimal numbers, slash combos, unit, or blank
    opt_dose = r"(?:\s*\d{1,4}(?:\.\d+)?(?:/\d{1,4}(?:\.\d+)?)?\s*(mg|ml|mcg|g|kg|units|iu|%|))?"

    pattern = re.compile(
        fr"\b{form}\s+{name}{opt_form}{opt_dose}\b",
        re.IGNORECASE
    )

    lines = text.split('\n')
    matches = set()
    for line in lines:
        line = line.strip()
        for m in pattern.finditer(line):
            out = m.group(0)
            out = re.sub(r"\s+", " ", out).strip()
            matches.add(out.upper())
    return '\n'.join(matches)






def clinical_ner_extract(text, use_gpu=False):
    """
    Uses ClinicalNER for medicine name, then finds form/dose in source sentence.
    Returns clean combinations: form + entity + dose (no unwanted text).
    """
    # Load models in GPU context if required
    import torch
    from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline

    device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
    tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
    model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
    ner_pipeline = pipeline(
        "ner",
        model=model,
        tokenizer=tokenizer,
        aggregation_strategy="simple",
        device=0 if device=="cuda" else -1
    )

    text_lines = text.split('\n')
    entities = ner_pipeline(text)
    meds = []
    for ent in entities:
        if ent["entity_group"] == "treatment":
            # For each detected medicine entity, scan lines for context
            entity_name = ent["word"].lower()
            for line in text_lines:
                if entity_name in line.lower():
                    # Find form and dose
                    form_match = re.search(r"(TAB(L?ET)?|CAP(SULE)?|SYRUP|SYP|DROP(S)?|INJ(CTION)?|OINTMENT|CREAM|GEL|PATCH|SOL(UTION)?|ORAL)", line, re.IGNORECASE)
                    dose_match = re.search(r"(\d{1,4} ?(mg|ml|mcg|g|kg|units|IU)|\d{1,2} ?%( ?w\/w| ?w\/v| ?v\/v)?)", line, re.IGNORECASE)
                    tokens = []
                    if form_match:
                        tokens.append(form_match.group(0).upper())
                    tokens.append(ent["word"].upper())
                    if dose_match:
                        tokens.append(dose_match.group(0))
                    meds.append(" ".join(tokens).strip())
                    break
    return '\n'.join(set(meds)) if meds else "None detected"

@spaces.GPU
def run_ocr_and_extract(image, temperature=0.2, extraction_mode="Regex"):
    # Load OCR model ONLY in GPU context!
    import torch
    from transformers import LightOnOCRForConditionalGeneration, LightOnOCRProcessor

    device = "cuda" if torch.cuda.is_available() else "cpu"
    attn = "sdpa" if device == "cuda" else "eager"
    dtype = torch.bfloat16 if device == "cuda" else torch.float32

    ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
        "lightonai/LightOnOCR-1B-1025",
        attn_implementation=attn,
        torch_dtype=dtype,
        trust_remote_code=True,
    ).to(device).eval()
    processor = LightOnOCRProcessor.from_pretrained(
        "lightonai/LightOnOCR-1B-1025",
        trust_remote_code=True,
    )

    processed_img = image

    # processed_img = preprocess_image_for_ocr(image)
    chat = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": processed_img}
            ],
        }
    ]
    inputs = processor.apply_chat_template(
        chat,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    )

    inputs = {
        k: (v.to(device=device, dtype=dtype)
            if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
            else v.to(device)
            if isinstance(v, torch.Tensor)
            else v)
        for k, v in inputs.items()
    }
    generation_kwargs = dict(
        **inputs,
        max_new_tokens=2048,
        temperature=temperature if temperature > 0 else 0.0,
        use_cache=True,
        do_sample=temperature > 0,
    )
    with torch.no_grad():
        outputs = ocr_model.generate(**generation_kwargs)

    output_text = processor.decode(outputs[0], skip_special_tokens=True)
    raw_text = output_text.strip()

    # Clean medicines using selected extraction method
    if extraction_mode == "Clinical NER":
        meds = clinical_ner_extract(raw_text, use_gpu=(device=="cuda"))
    else: # Regex
        meds = extract_medication_lines(raw_text)
    yield meds, raw_text, processed_img

def process_input(file_input, temperature, extraction_mode):
    if file_input is None:
        yield "Please upload an image/PDF.", "", None
        return
    image_to_process = Image.open(file_input)
    for meds_out, raw_text, processed_img in run_ocr_and_extract(image_to_process, temperature, extraction_mode):
        yield meds_out, raw_text, processed_img

with gr.Blocks(title="πŸ’Š Medicine Extraction", theme=gr.themes.Soft()) as demo:
    file_input = gr.File(
        label="Upload Image (or PDF first page for OCR)",
        file_types=[".png", ".jpg", ".jpeg"], # PDF support: requires render as image first
        type="filepath"
    )
    temperature = gr.Slider(
        minimum=0.0,
        maximum=1.0,
        value=0.2,
        step=0.05,
        label="Temperature"
    )
    extraction_mode = gr.Radio(
        choices=["Regex", "Clinical NER"],
        value="Regex",
        label="Extraction Method"
    )
    medicines_output = gr.Textbox(
        label="πŸ’Š Cleaned Medicines",
        lines=10,
        interactive=False,
        show_copy_button=True
    )
    raw_output = gr.Textbox(
        label="Raw OCR Output",
        lines=10,
        interactive=False,
        show_copy_button=True
    )
    rendered_image = gr.Image(
        label="Processed Image (Thresholded for OCR)",
        interactive=False
    )
    submit_btn = gr.Button("Extract Medicines", variant="primary")

    submit_btn.click(
        fn=process_input,
        inputs=[file_input, temperature, extraction_mode],
        outputs=[medicines_output, raw_output, rendered_image]
    )

if __name__ == "__main__":
    demo.launch()







#####################################    version  3  NER modification to be done  ############################################################

# import spaces
# import gradio as gr
# from PIL import Image
# import numpy as np
# import cv2
# import re

# import re

# def extract_medication_lines(text):
#     """
#     Extracts medication/drug lines from text using flexible regex.
#     Supports tablet, capsule, syrup, drops, injection, ointment, cream, gel, patch, solution, etc.
#     Matches dose like '1/2/10/250/500 mg/ml/mcg/g/kg' or concentration '1%/2%/0.2%/0.5%/10%' w/w, w/v, v/v.
#     """

#     form_pattern = r"(TAB(L?ET)?|CAP(SULE)?|SYRUP|SYP|DROP(S)?|INJ(CTION)?|OINTMENT|CREAM|GEL|PATCH|SOL(UTION)?|ORAL)"
#     # Drug name: starts with a word (alphanumeric, maybe a hyphen), up to 4 words (spaces, hyphens or slash)
#     name_pattern = r"([A-Z0-9\-/]+(?:\s+[A-Z0-9\-/]+){0,4})"
#     # Dose: e.g., 250mg, 10ml, 0.5%, 10 mcg, 150mcg, etc. and concentration/w/w/w/v/etc.
#     dose_pattern = r"(\d{1,4}\s*(mg|ml|mcg|g|kg|units|IU)|\d{1,2}\s*%(\s*w\/w|\s*w\/v|\s*v\/v)?)"
#     # concentration can appear for creams/gels: e.g. "1% w/w", "2%"

#     # Main pattern: will attempt to capture form anywhere, then name, then dose/concentration
#     main_pattern = (
#         r"(?:" + form_pattern + r"\s+)?" +          # Form prefix optional
#         name_pattern + r"\s*" +
#         r"(?:" + form_pattern + r"\s*)?" +          # Form mid/suffix optional
#         r"(?:" + dose_pattern + r")"                # Dose/concentration required
#     )

#     med_regex = re.compile(main_pattern, re.IGNORECASE)

#     meds = []
#     for line in text.split('\n'):
#         line_stripped = line.strip()
#         match = med_regex.search(line_stripped)
#         if match:
#             meds.append(line_stripped)
#     return '\n'.join(meds)


# ###########################    added NER modification to be done ###################################

# def get_medicine_context(entities, text_lines):
#     """
#     For each medicine entity detected by NER, find its form and dose context from its source line.
#     Returns list of strings like 'TAB ALDACTONE 25MG'.
#     """
#     output = []
#     for ent in entities:
#         if ent["entity_group"] == "treatment":
#             # Find line containing the entity's word (robust for multiline output)
#             for line in text_lines:
#                 if ent["word"].lower() in line.lower():
#                     # Search line for context
#                     match = re.search(r"((TAB(L?ET)?|CAP(SULE)?|SYRUP|SYP|DROP(S)?|INJ(CTION)?|OINTMENT|CREAM|GEL|PATCH|SOL(UTION)?|ORAL).{0,40})", line, re.IGNORECASE)
#                     dose = re.search(r"\d{1,4}\s*(mg|ml|mcg|g|kg|units|IU)|\d{1,2}\s*%(\s*w\/w|\s*w\/v|\s*v\/v)?", line, re.IGNORECASE)
#                     info = []
#                     if match:
#                         info.append(match.group(0).strip())
#                     else:
#                         info.append(ent["word"].strip())
#                     if dose:
#                         info.append(dose.group(0).strip())
#                     output.append(" ".join(info))
#                     break
#     return "\n".join(set(output)) if output else "None detected"


# ################################



# def preprocess_image_for_ocr(image):
#     image_rgb = image.convert("RGB")
#     img_np = np.array(image_rgb)
#     gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
#     adaptive_threshold = cv2.adaptiveThreshold(
#         gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 85,35,
#     )
#     preprocessed_pil = Image.fromarray(adaptive_threshold)
#     return preprocessed_pil

# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2, use_ner=False):
#     # Import and load within GPU context!
#     import torch
#     from transformers import (
#         LightOnOCRForConditionalGeneration,
#         LightOnOCRProcessor,
#         AutoTokenizer, AutoModelForTokenClassification, pipeline,
#     )

#     device = "cuda" if torch.cuda.is_available() else "cpu"
#     attn_implementation = "sdpa" if device == "cuda" else "eager"
#     dtype = torch.bfloat16 if device == "cuda" else torch.float32

#     ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
#         "lightonai/LightOnOCR-1B-1025",
#         attn_implementation=attn_implementation,
#         torch_dtype=dtype,
#         trust_remote_code=True,
#     ).to(device).eval()

#     processor = LightOnOCRProcessor.from_pretrained(
#         "lightonai/LightOnOCR-1B-1025",
#         trust_remote_code=True,
#     )
#     # NER only if requested
#     if use_ner:
#         ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
#         ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
#         ner_pipeline = pipeline(
#             "ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple"
#         )

#     processed_img = preprocess_image_for_ocr(image)

#     chat = [
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image", "image": processed_img}
#             ],
#         }
#     ]
#     inputs = processor.apply_chat_template(
#         chat,
#         add_generation_prompt=True,
#         tokenize=True,
#         return_dict=True,
#         return_tensors="pt",
#     )

#     inputs = {
#         k: (v.to(device=device, dtype=dtype)
#             if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
#             else v.to(device)
#             if isinstance(v, torch.Tensor)
#             else v)
#         for k, v in inputs.items()
#     }
#     generation_kwargs = dict(
#         **inputs,
#         max_new_tokens=2048,
#         temperature=temperature if temperature > 0 else 0.0,
#         use_cache=True,
#         do_sample=temperature > 0,
#     )
#     with torch.no_grad():
#         outputs = ocr_model.generate(**generation_kwargs)

#     output_text = processor.decode(outputs[0], skip_special_tokens=True)
#     cleaned_text = output_text.strip()
#     # Extract medicines
#     if use_ner:
#         entities = ner_pipeline(cleaned_text)
#         meds = []
#         for ent in entities:
#             if ent["entity_group"] == "treatment":
#                 word = ent["word"]
#                 if word.startswith("##") and meds:
#                     meds[-1] += word[2:]
#                 else:
#                     meds.append(word)
#         result_meds = ", ".join(set(meds)) if meds else "None detected"
#     else:
#         result_meds = extract_medication_lines(cleaned_text) or "None detected"

#     yield result_meds, processed_img  # Only medicines and processed image

# def process_input(file_input, temperature, page_num, extraction_mode):
#     if file_input is None:
#         yield "Please upload an image or PDF first.", None
#         return
#     image_to_process = Image.open(file_input) if not str(file_input).lower().endswith(".pdf") else None  # simplify to image only
#     use_ner = extraction_mode == "Clinical NER"

#     for meds_out, processed_img in extract_text_from_image(image_to_process, temperature, use_ner):
#         yield meds_out, processed_img

# with gr.Blocks(title="πŸ’Š Medicine Extraction", theme=gr.themes.Soft()) as demo:
#     file_input = gr.File(
#         label="πŸ–ΌοΈ Upload Image",
#         file_types=[".png", ".jpg", ".jpeg"],
#         type="filepath"
#     )
#     temperature = gr.Slider(
#         minimum=0.0,
#         maximum=1.0,
#         value=0.2,
#         step=0.05,
#         label="Temperature"
#     )
#     extraction_mode = gr.Radio(
#         choices=["Clinical NER", "Regex"],
#         value="Regex",
#         label="Extraction Method",
#         info="Clinical NER uses ML, Regex uses rules"
#     )
#     medicines_output = gr.Textbox(
#         label="πŸ’Š Extracted Medicines/Drugs",
#         placeholder="Medicine/drug names will appear here...",
#         lines=2,
#         max_lines=10,
#         interactive=False,
#         show_copy_button=True
#     )
#     rendered_image = gr.Image(
#         label="Processed Image (Adaptive Thresholded for OCR)",
#         interactive=False
#     )
#     submit_btn = gr.Button("Extract Medicines", variant="primary")

#     page_slider = gr.Slider(minimum=1, maximum=20, value=1, step=1, label="Page Number")

#     submit_btn.click(
#     fn=process_input,
#     inputs=[file_input, temperature, page_slider, extraction_mode],
#     outputs=[medicines_output, rendered_image]
# )


# if __name__ == "__main__":
#     demo.launch()



####################################################  running code only NER #######################

#!/usr/bin/env python3

# import subprocess
# import sys

# import spaces
# import torch

# import gradio as gr
# from PIL import Image
# import numpy as np
# import cv2
# import pypdfium2 as pdfium
# from transformers import (
#     LightOnOCRForConditionalGeneration,
#     LightOnOCRProcessor,
# )
# from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline

# device = "cuda" if torch.cuda.is_available() else "cpu"
# if device == "cuda":
#     attn_implementation = "sdpa"
#     dtype = torch.bfloat16
# else:
#     attn_implementation = "eager"
#     dtype = torch.float32

# ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
#     "lightonai/LightOnOCR-1B-1025",
#     attn_implementation=attn_implementation,
#     torch_dtype=dtype,
#     trust_remote_code=True,
# ).to(device).eval()

# processor = LightOnOCRProcessor.from_pretrained(
#     "lightonai/LightOnOCR-1B-1025",
#     trust_remote_code=True,
# )

# ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
# ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
# ner_pipeline = pipeline(
#     "ner",
#     model=ner_model,
#     tokenizer=ner_tokenizer,
#     aggregation_strategy="simple",
# )

# def render_pdf_page(page, max_resolution=1540, scale=2.77):
#     width, height = page.get_size()
#     pixel_width = width * scale
#     pixel_height = height * scale
#     resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
#     target_scale = scale * resize_factor
#     return page.render(scale=target_scale, rev_byteorder=True).to_pil()

# def process_pdf(pdf_path, page_num=1):
#     pdf = pdfium.PdfDocument(pdf_path)
#     total_pages = len(pdf)
#     page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
#     page = pdf[page_idx]
#     img = render_pdf_page(page)
#     pdf.close()
#     return img, total_pages, page_idx + 1

# def clean_output_text(text):
#     markers_to_remove = ["system", "user", "assistant"]
#     lines = text.split('\n')
#     cleaned_lines = []
#     for line in lines:
#         stripped = line.strip()
#         if stripped.lower() not in markers_to_remove:
#             cleaned_lines.append(line)
#     cleaned = '\n'.join(cleaned_lines).strip()
#     if "assistant" in text.lower():
#         parts = text.split("assistant", 1)
#         if len(parts) > 1:
#             cleaned = parts[1].strip()
#     return cleaned

# def preprocess_image_for_ocr(image):
#     """Convert PIL.Image to adaptive thresholded image for OCR."""
#     image_rgb = image.convert("RGB")
#     img_np = np.array(image_rgb)
#     gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
#     adaptive_threshold = cv2.adaptiveThreshold(
#         gray,
#         255,
#         cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
#         cv2.THRESH_BINARY,
#         85,
#         35,
#     )
#     preprocessed_pil = Image.fromarray(adaptive_threshold)
#     return preprocessed_pil

# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2):
#     """OCR + clinical NER, with preprocessing."""
#     processed_img = preprocess_image_for_ocr(image)
#     chat = [
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image", "image": processed_img}
#             ],
#         }
#     ]
#     inputs = processor.apply_chat_template(
#         chat,
#         add_generation_prompt=True,
#         tokenize=True,
#         return_dict=True,
#         return_tensors="pt",
#     )
#     # Move inputs to device
#     inputs = {
#         k: (
#             v.to(device=device, dtype=dtype)
#             if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
#             else v.to(device)
#             if isinstance(v, torch.Tensor)
#             else v
#         )
#         for k, v in inputs.items()
#     }
#     generation_kwargs = dict(
#         **inputs,
#         max_new_tokens=2048,
#         temperature=temperature if temperature > 0 else 0.0,
#         use_cache=True,
#         do_sample=temperature > 0,
#     )
#     with torch.no_grad():
#         outputs = ocr_model.generate(**generation_kwargs)

#     output_text = processor.decode(outputs[0], skip_special_tokens=True)
#     cleaned_text = clean_output_text(output_text)
#     entities = ner_pipeline(cleaned_text)
#     medications = []
#     for ent in entities:
#         if ent["entity_group"] == "treatment":
#             word = ent["word"]
#             if word.startswith("##") and medications:
#                 medications[-1] += word[2:]
#             else:
#                 medications.append(word)
#     medications_str = ", ".join(set(medications)) if medications else "None detected"
#     yield cleaned_text, medications_str, output_text, processed_img

# def process_input(file_input, temperature, page_num):
#     if file_input is None:
#         yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
#         return

#     image_to_process = None
#     page_info = ""
#     slider_value = page_num
#     file_path = file_input if isinstance(file_input, str) else file_input.name

#     if file_path.lower().endswith(".pdf"):
#         try:
#             image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
#             page_info = f"Processing page {actual_page} of {total_pages}"
#             slider_value = actual_page
#         except Exception as e:
#             msg = f"Error processing PDF: {str(e)}"
#             yield msg, "", msg, "", None, slider_value
#             return
#     else:
#         try:
#             image_to_process = Image.open(file_path)
#             page_info = "Processing image"
#         except Exception as e:
#             msg = f"Error opening image: {str(e)}"
#             yield msg, "", msg, "", None, slider_value
#             return

#     try:
#         for cleaned_text, medications, raw_md, processed_img in extract_text_from_image(
#             image_to_process, temperature
#         ):
#             yield cleaned_text, medications, raw_md, page_info, processed_img, slider_value
#     except Exception as e:
#         error_msg = f"Error during text extraction: {str(e)}"
#         yield error_msg, "", error_msg, page_info, image_to_process, slider_value

# def update_slider(file_input):
#     if file_input is None:
#         return gr.update(maximum=20, value=1)
#     file_path = file_input if isinstance(file_input, str) else file_input.name
#     if file_path.lower().endswith('.pdf'):
#         try:
#             pdf = pdfium.PdfDocument(file_path)
#             total_pages = len(pdf)
#             pdf.close()
#             return gr.update(maximum=total_pages, value=1)
#         except:
#             return gr.update(maximum=20, value=1)
#     else:
#         return gr.update(maximum=1, value=1)

# with gr.Blocks(title="πŸ’Š Medicine Extraction", theme=gr.themes.Soft()) as demo:
#     file_input = gr.File(
#         label="πŸ–ΌοΈ Upload Image or PDF",
#         file_types=[".pdf", ".png", ".jpg", ".jpeg"],
#         type="filepath"
#     )
#     temperature = gr.Slider(
#         minimum=0.0,
#         maximum=1.0,
#         value=0.2,
#         step=0.05,
#         label="Temperature"
#     )
#     page_slider = gr.Slider(
#         minimum=1, maximum=20, value=1, step=1,
#         label="Page Number (PDF only)",
#         interactive=True
#     )
#     output_text = gr.Textbox(
#         label="πŸ“ Extracted Text",
#         lines=4,
#         max_lines=10,
#         interactive=False,
#         show_copy_button=True
#     )
#     medicines_output = gr.Textbox(
#         label="πŸ’Š Extracted Medicines/Drugs",
#         placeholder="Medicine/drug names will appear here...",
#         lines=2,
#         max_lines=5,
#         interactive=False,
#         show_copy_button=True
#     )
#     raw_output = gr.Textbox(
#         label="Raw Model Output",
#         lines=2,
#         max_lines=5,
#         interactive=False
#     )
#     page_info = gr.Markdown(
#         value="" # Info of PDF page
#     )
#     rendered_image = gr.Image(
#         label="Processed Image (Thresholded for OCR)",
#         interactive=False
#     )
#     num_pages = gr.Number(
#         value=1, label="Current Page (slider)", visible=False
#     )
#     submit_btn = gr.Button("Extract Medicines", variant="primary")

#     submit_btn.click(
#         fn=process_input,
#         inputs=[file_input, temperature, page_slider],
#         outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
#     )

#     file_input.change(
#         fn=update_slider,
#         inputs=[file_input],
#         outputs=[page_slider]
#     )

# if __name__ == "__main__":
#     demo.launch()




##########################################   #############################################################



# Create Gradio interface
# with gr.Blocks(title="πŸ“– Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo:
#     gr.Markdown(f"""
# # πŸ“– Image/PDF to Text Extraction with LightOnOCR

# **πŸ’‘ How to use:**
# 1. Upload an image or PDF
# 2. For PDFs: select which page to extract (1-20)
# 3. Adjust temperature if needed
# 4. Click "Extract Text"

# **Note:** The Markdown rendering for tables may not always be perfect. Check the raw output for complex tables!

# **Model:** LightOnOCR-1B-1025 by LightOn AI  
# **Device:** {device.upper()}  
# **Attention:** {attn_implementation}
# """)
    
#     with gr.Row():
#         with gr.Column(scale=1):
#             file_input = gr.File(
#                 label="πŸ–ΌοΈ Upload Image or PDF",
#                 file_types=[".pdf", ".png", ".jpg", ".jpeg"],
#                 type="filepath"
#             )
#             rendered_image = gr.Image(
#                 label="πŸ“„ Preview",
#                 type="pil",
#                 height=400,
#                 interactive=False
#             )
#             num_pages = gr.Slider(
#                 minimum=1,
#                 maximum=20,
#                 value=1,
#                 step=1,
#                 label="PDF: Page Number",
#                 info="Select which page to extract"
#             )
#             page_info = gr.Textbox(
#                 label="Processing Info",
#                 value="",
#                 interactive=False
#             )
#             temperature = gr.Slider(
#                 minimum=0.0,
#                 maximum=1.0,
#                 value=0.2,
#                 step=0.05,
#                 label="Temperature",
#                 info="0.0 = deterministic, Higher = more varied"
#             )
#             submit_btn = gr.Button("Extract Text", variant="primary")
#             clear_btn = gr.Button("Clear", variant="secondary")
        
#         with gr.Column(scale=2):
#             output_text = gr.Markdown(
#                 label="πŸ“„ Extracted Text (Rendered)",
#                 value="*Extracted text will appear here...*"
#             )
#             medications_output = gr.Textbox(
#     label="πŸ’Š Extracted Medicines/Drugs",
#     placeholder="Medicine/drug names will appear here...",
#     lines=2,
#     max_lines=5,
#     interactive=False,
#     show_copy_button=True
# )
    
#     with gr.Row():
#         with gr.Column():
#             raw_output = gr.Textbox(
#                 label="Raw Markdown Output",
#                 placeholder="Raw text will appear here...",
#                 lines=20,
#                 max_lines=30,
#                 show_copy_button=True
#             )
    
#     # Event handlers
#     submit_btn.click(
#     fn=process_input,
#     inputs=[file_input, temperature, num_pages, ],
#     outputs=[output_text, medications_output, raw_output, page_info, rendered_image, num_pages]
# )




####################################  old code to be checked #############################################

# import sys
# import threading

# import spaces
# import torch

# import gradio as gr
# from PIL import Image
# from io import BytesIO
# import pypdfium2 as pdfium
# from transformers import (
#     LightOnOCRForConditionalGeneration,
#     LightOnOCRProcessor,
#     TextIteratorStreamer,
# )

# # ---- CLINICAL NER IMPORTS ----
# import spacy

# device = "cuda" if torch.cuda.is_available() else "cpu"

# # Choose best attention implementation based on device
# if device == "cuda":
#     attn_implementation = "sdpa"  
#     dtype = torch.bfloat16
#     print("Using sdpa for GPU")
# else:
#     attn_implementation = "eager"  # Best for CPU
#     dtype = torch.float32
#     print("Using eager attention for CPU")

# # Initialize the LightOnOCR model and processor
# print(f"Loading model on {device} with {attn_implementation} attention...")
# model = LightOnOCRForConditionalGeneration.from_pretrained(
#     "lightonai/LightOnOCR-1B-1025",
#     attn_implementation=attn_implementation,
#     torch_dtype=dtype,
#     trust_remote_code=True
# ).to(device).eval()

# processor = LightOnOCRProcessor.from_pretrained(
#     "lightonai/LightOnOCR-1B-1025",
#     trust_remote_code=True
# )
# print("Model loaded successfully!")

# # ---- LOAD CLINICAL NER MODEL (BC5CDR) ----
# print("Loading clinical NER model (bc5cdr)...")
# nlp_ner = spacy.load("en_ner_bc5cdr_md")
# print("Clinical NER loaded.")

# def render_pdf_page(page, max_resolution=1540, scale=2.77):
#     """Render a PDF page to PIL Image."""
#     width, height = page.get_size()
#     pixel_width = width * scale
#     pixel_height = height * scale
#     resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
#     target_scale = scale * resize_factor
#     return page.render(scale=target_scale, rev_byteorder=True).to_pil()


# def process_pdf(pdf_path, page_num=1):
#     """Extract a specific page from PDF."""
#     pdf = pdfium.PdfDocument(pdf_path)
#     total_pages = len(pdf)
#     page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
    
#     page = pdf[page_idx]
#     img = render_pdf_page(page)
    
#     pdf.close()
#     return img, total_pages, page_idx + 1


# def clean_output_text(text):
#     """Remove chat template artifacts from output."""
#     markers_to_remove = ["system", "user", "assistant"]
#     lines = text.split('\n')
#     cleaned_lines = []
#     for line in lines:
#         stripped = line.strip()
#         # Skip lines that are just template markers
#         if stripped.lower() not in markers_to_remove:
#             cleaned_lines.append(line)
#     cleaned = '\n'.join(cleaned_lines).strip()
#     if "assistant" in text.lower():
#         parts = text.split("assistant", 1)
#         if len(parts) > 1:
#             cleaned = parts[1].strip()
#     return cleaned

# def extract_medication_names(text):
#     """Extract medication names using clinical NER (spacy: bc5cdr CHEMICAL)."""
#     doc = nlp_ner(text)
#     meds = [ent.text for ent in doc.ents if ent.label_ == "CHEMICAL"]
#     meds_unique = list(dict.fromkeys(meds))
#     return meds_unique


# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2, stream=False):
#     """Extract text from image using LightOnOCR model."""
#     chat = [
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image", "url": image},
#             ],
#         }
#     ]
#     inputs = processor.apply_chat_template(
#         chat,
#         add_generation_prompt=True,
#         tokenize=True,
#         return_dict=True,
#         return_tensors="pt"
#     )
#     inputs = {
#         k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
#         else v.to(device) if isinstance(v, torch.Tensor) 
#         else v 
#         for k, v in inputs.items()
#     }
#     generation_kwargs = dict(
#         **inputs,
#         max_new_tokens=2048,
#         temperature=temperature if temperature > 0 else 0.0,
#         use_cache=True,
#         do_sample=temperature > 0,
#     )
#     if stream:
#         # Streaming generation
#         streamer = TextIteratorStreamer(
#             processor.tokenizer,
#             skip_prompt=True,
#             skip_special_tokens=True
#         )
#         generation_kwargs["streamer"] = streamer
#         thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
#         thread.start()
#         full_text = ""
#         for new_text in streamer:
#             full_text += new_text
#             cleaned_text = clean_output_text(full_text)
#             yield cleaned_text
#         thread.join()
#     else:
#         # Non-streaming generation
#         with torch.no_grad():
#             outputs = model.generate(**generation_kwargs)
#         output_text = processor.decode(outputs[0], skip_special_tokens=True)
#         cleaned_text = clean_output_text(output_text)
#         yield cleaned_text

# def process_input(file_input, temperature, page_num, enable_streaming):
#     """Process uploaded file (image or PDF) and extract medication names via OCR+NER."""
#     if file_input is None:
#         yield "Please upload an image or PDF first.", "", "", None, gr.update()
#         return
#     image_to_process = None
#     page_info = ""
#     file_path = file_input if isinstance(file_input, str) else file_input.name
#     # Handle PDF files
#     if file_path.lower().endswith('.pdf'):
#         try:
#             image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
#             page_info = f"Processing page {actual_page} of {total_pages}"
#         except Exception as e:
#             yield f"Error processing PDF: {str(e)}", "", "", None, gr.update()
#             return
#     # Handle image files
#     else:
#         try:
#             image_to_process = Image.open(file_path)
#             page_info = "Processing image"
#         except Exception as e:
#             yield f"Error opening image: {str(e)}", "", "", None, gr.update()
#             return
#     try:
#         for extracted_text in extract_text_from_image(image_to_process, temperature, stream=enable_streaming):
#             meds = extract_medication_names(extracted_text)
#             meds_str = "\n".join(meds) if meds else "No medications found."
#             yield meds_str, meds_str, page_info, image_to_process, gr.update()
#     except Exception as e:
#         error_msg = f"Error during text extraction: {str(e)}"
#         yield error_msg, error_msg, page_info, image_to_process, gr.update()

# def update_slider(file_input):
#     """Update page slider based on PDF page count."""
#     if file_input is None:
#         return gr.update(maximum=20, value=1)
#     file_path = file_input if isinstance(file_input, str) else file_input.name
#     if file_path.lower().endswith('.pdf'):
#         try:
#             pdf = pdfium.PdfDocument(file_path)
#             total_pages = len(pdf)
#             pdf.close()
#             return gr.update(maximum=total_pages, value=1)
#         except:
#             return gr.update(maximum=20, value=1)
#     else:
#         return gr.update(maximum=1, value=1)

# # ----- GRADIO UI -----
# with gr.Blocks(title="πŸ“– Image/PDF OCR + Clinical NER", theme=gr.themes.Soft()) as demo:
#     gr.Markdown(f"""
# # πŸ“– Medication Extraction from Image/PDF with LightOnOCR + Clinical NER

# **πŸ’‘ How to use:**
# 1. Upload an image or PDF
# 2. For PDFs: select which page to extract
# 3. Adjust temperature if needed
# 4. Click "Extract Medications"

# **Output:** Only medication names found in text (via NER)

# **Model:** LightOnOCR-1B-1025 by LightOn AI  
# **Device:** {device.upper()}  
# **Attention:** {attn_implementation}
# """)
#     with gr.Row():
#         with gr.Column(scale=1):
#             file_input = gr.File(
#                 label="πŸ–ΌοΈ Upload Image or PDF",
#                 file_types=[".pdf", ".png", ".jpg", ".jpeg"],
#                 type="filepath"
#             )
#             rendered_image = gr.Image(
#                 label="πŸ“„ Preview",
#                 type="pil",
#                 height=400,
#                 interactive=False
#             )
#             num_pages = gr.Slider(
#                 minimum=1,
#                 maximum=20,
#                 value=1,
#                 step=1,
#                 label="PDF: Page Number",
#                 info="Select which page to extract"
#             )
#             page_info = gr.Textbox(
#                 label="Processing Info",
#                 value="",
#                 interactive=False
#             )
#             temperature = gr.Slider(
#                 minimum=0.0,
#                 maximum=1.0,
#                 value=0.2,
#                 step=0.05,
#                 label="Temperature",
#                 info="0.0 = deterministic, Higher = more varied"
#             )
#             enable_streaming = gr.Checkbox(
#                 label="Enable Streaming",
#                 value=True,
#                 info="Show text progressively as it's generated"
#             )
#             submit_btn = gr.Button("Extract Medications", variant="primary")
#             clear_btn = gr.Button("Clear", variant="secondary")
#         with gr.Column(scale=2):
#             output_text = gr.Markdown(
#                 label="🩺 Extracted Medication Names",
#                 value="*Medication names will appear here...*"
#             )
#     with gr.Row():
#         with gr.Column():
#             raw_output = gr.Textbox(
#                 label="Extracted Medication Names (Raw)",
#                 placeholder="Medication list will appear here...",
#                 lines=20,
#                 max_lines=30,
#                 show_copy_button=True
#             )
#     # Event handlers
#     submit_btn.click(
#         fn=process_input,
#         inputs=[file_input, temperature, num_pages, enable_streaming],
#         outputs=[output_text, raw_output, page_info, rendered_image, num_pages]
#     )
#     file_input.change(
#         fn=update_slider,
#         inputs=[file_input],
#         outputs=[num_pages]
#     )
#     clear_btn.click(
#         fn=lambda: (None, "*Medication names will appear here...*", "", "", None, 1),
#         outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
#     )

# if __name__ == "__main__":
#     demo.launch()