LightOnOCR / app.py
IFMedTechdemo's picture
Update app.py
c2a331b verified
raw
history blame
22.5 kB
#!/usr/bin/env python3
import subprocess
import sys
import threading
import spaces
import torch
import gradio as gr
from PIL import Image
from io import BytesIO
import pypdfium2 as pdfium
from transformers import (
LightOnOCRForConditionalGeneration,
LightOnOCRProcessor,
TextIteratorStreamer,
)
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
attn_implementation = "sdpa"
dtype = torch.bfloat16
print("Using sdpa for GPU")
else:
attn_implementation = "eager"
dtype = torch.float32
print("Using eager attention for CPU")
print(f"Loading LightOnOCR model on {device} with {attn_implementation} attention...")
ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
attn_implementation=attn_implementation,
torch_dtype=dtype,
trust_remote_code=True,
).to(device).eval()
processor = LightOnOCRProcessor.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
trust_remote_code=True,
)
print("LightOnOCR model loaded successfully!")
# -------- Clinical NER models (load ONCE) --------
print("Loading clinical NER model...")
ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
ner_pipeline = pipeline(
"ner",
model=ner_model,
tokenizer=ner_tokenizer,
aggregation_strategy="simple",
)
print("Clinical NER model loaded successfully!")
def render_pdf_page(page, max_resolution=1540, scale=2.77):
"""Render a PDF page to PIL Image."""
width, height = page.get_size()
pixel_width = width * scale
pixel_height = height * scale
resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
target_scale = scale * resize_factor
return page.render(scale=target_scale, rev_byteorder=True).to_pil()
def process_pdf(pdf_path, page_num=1):
"""Extract a specific page from PDF."""
pdf = pdfium.PdfDocument(pdf_path)
total_pages = len(pdf)
page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
page = pdf[page_idx]
img = render_pdf_page(page)
pdf.close()
return img, total_pages, page_idx + 1
def clean_output_text(text):
"""Remove chat template artifacts from output."""
# Remove common chat template markers
markers_to_remove = ["system", "user", "assistant"]
# Split by lines and filter
lines = text.split('\n')
cleaned_lines = []
for line in lines:
stripped = line.strip()
# Skip lines that are just template markers
if stripped.lower() not in markers_to_remove:
cleaned_lines.append(line)
# Join back and strip leading/trailing whitespace
cleaned = '\n'.join(cleaned_lines).strip()
# Alternative approach: if there's an "assistant" marker, take everything after it
if "assistant" in text.lower():
parts = text.split("assistant", 1)
if len(parts) > 1:
cleaned = parts[1].strip()
return cleaned
@spaces.GPU
def extract_text_from_image(image, temperature=0.2, stream=False):
"""Extract text from image using LightOnOCR model, and run clinical NER."""
# Prepare the chat format
chat = [
{
"role": "user",
"content": [
{"type": "image", "url": image}, # adjust to {"type": "image", "image": image} if LightOnOCR expects that
],
}
]
# Tokenize
inputs = processor.apply_chat_template(
chat,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
# Move inputs to device
inputs = {
k: (
v.to(device=device, dtype=dtype)
if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
else v.to(device)
if isinstance(v, torch.Tensor)
else v
)
for k, v in inputs.items()
}
generation_kwargs = dict(
**inputs,
max_new_tokens=2048,
temperature=temperature if temperature > 0 else 0.0,
use_cache=True,
do_sample=temperature > 0,
)
if stream:
# Streaming generation
streamer = TextIteratorStreamer(
processor.tokenizer,
skip_prompt=True,
skip_special_tokens=True,
)
generation_kwargs["streamer"] = streamer
thread = threading.Thread(target=ocr_model.generate, kwargs=generation_kwargs)
thread.start()
full_text = ""
for new_text in streamer:
full_text += new_text
cleaned_text = clean_output_text(full_text)
# For streaming, we’ll only show text progressively,
# and keep medications empty (or compute at the end if you prefer).
yield cleaned_text, ""
thread.join()
else:
# Non-streaming generation
with torch.no_grad():
outputs = ocr_model.generate(**generation_kwargs)
output_text = processor.decode(outputs[0], skip_special_tokens=True)
cleaned_text = clean_output_text(output_text)
# Clinical NER on the full cleaned text
entities = ner_pipeline(cleaned_text)
medications = []
for ent in entities:
if ent["entity_group"] == "treatment":
word = ent["word"]
if word.startswith("##") and medications:
medications[-1] += word[2:]
else:
medications.append(word)
medications_str = ", ".join(set(medications)) if medications else "None detected"
yield cleaned_text, medications_str
def process_input(file_input, temperature, page_num, enable_streaming):
"""Process uploaded file (image or PDF) and extract text with optional streaming."""
if file_input is None:
# 6 outputs: [output_text, medications_output, raw_output, page_info, rendered_image, num_pages]
yield "Please upload an image or PDF first.", "", "", "", None, 1
return
image_to_process = None
page_info = ""
slider_value = page_num
file_path = file_input if isinstance(file_input, str) else file_input.name
# Handle PDF files
if file_path.lower().endswith(".pdf"):
try:
image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
page_info = f"Processing page {actual_page} of {total_pages}"
slider_value = actual_page
except Exception as e:
msg = f"Error processing PDF: {str(e)}"
yield msg, "", msg, "", None, slider_value
return
else:
# Handle image files
try:
image_to_process = Image.open(file_path)
page_info = "Processing image"
except Exception as e:
msg = f"Error opening image: {str(e)}"
yield msg, "", msg, "", None, slider_value
return
try:
# Extract text using LightOnOCR with optional streaming
for extracted_text, medications in extract_text_from_image(
image_to_process, temperature, stream=enable_streaming
):
raw_md = extracted_text # or you can keep a different raw version
# 6 outputs: markdown_text, medications, raw_output, page_info, image, slider
yield extracted_text, medications, raw_md, page_info, image_to_process, gr.update(
value=slider_value
)
except Exception as e:
error_msg = f"Error during text extraction: {str(e)}"
# 6 outputs
yield error_msg, "", error_msg, page_info, image_to_process, gr.update(value=slider_value)
def update_slider(file_input):
"""Update page slider based on PDF page count."""
if file_input is None:
return gr.update(maximum=20, value=1)
file_path = file_input if isinstance(file_input, str) else file_input.name
if file_path.lower().endswith('.pdf'):
try:
pdf = pdfium.PdfDocument(file_path)
total_pages = len(pdf)
pdf.close()
return gr.update(maximum=total_pages, value=1)
except:
return gr.update(maximum=20, value=1)
else:
return gr.update(maximum=1, value=1)
# Create Gradio interface
with gr.Blocks(title="📖 Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# 📖 Image/PDF to Text Extraction with LightOnOCR
**💡 How to use:**
1. Upload an image or PDF
2. For PDFs: select which page to extract (1-20)
3. Adjust temperature if needed
4. Click "Extract Text"
**Note:** The Markdown rendering for tables may not always be perfect. Check the raw output for complex tables!
**Model:** LightOnOCR-1B-1025 by LightOn AI
**Device:** {device.upper()}
**Attention:** {attn_implementation}
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="🖼️ Upload Image or PDF",
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
type="filepath"
)
rendered_image = gr.Image(
label="📄 Preview",
type="pil",
height=400,
interactive=False
)
num_pages = gr.Slider(
minimum=1,
maximum=20,
value=1,
step=1,
label="PDF: Page Number",
info="Select which page to extract"
)
page_info = gr.Textbox(
label="Processing Info",
value="",
interactive=False
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.05,
label="Temperature",
info="0.0 = deterministic, Higher = more varied"
)
enable_streaming = gr.Checkbox(
label="Enable Streaming",
value=True,
info="Show text progressively as it's generated"
)
submit_btn = gr.Button("Extract Text", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=2):
output_text = gr.Markdown(
label="📄 Extracted Text (Rendered)",
value="*Extracted text will appear here...*"
)
medications_output = gr.Textbox(
label="💊 Extracted Medicines/Drugs",
placeholder="Medicine/drug names will appear here...",
lines=2,
max_lines=5,
interactive=False,
show_copy_button=True
)
with gr.Row():
with gr.Column():
raw_output = gr.Textbox(
label="Raw Markdown Output",
placeholder="Raw text will appear here...",
lines=20,
max_lines=30,
show_copy_button=True
)
# Event handlers
submit_btn.click(
fn=process_input,
inputs=[file_input, temperature, num_pages, enable_streaming],
outputs=[output_text, medications_output, raw_output, page_info, rendered_image, num_pages]
)
file_input.change(
fn=update_slider,
inputs=[file_input],
outputs=[num_pages]
)
clear_btn.click(
fn=lambda: (None, "*Extracted text will appear here...*", "", "", None, 1),
outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
)
if __name__ == "__main__":
demo.launch()
#################################### old code to be checked #############################################
# import sys
# import threading
# import spaces
# import torch
# import gradio as gr
# from PIL import Image
# from io import BytesIO
# import pypdfium2 as pdfium
# from transformers import (
# LightOnOCRForConditionalGeneration,
# LightOnOCRProcessor,
# TextIteratorStreamer,
# )
# # ---- CLINICAL NER IMPORTS ----
# import spacy
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Choose best attention implementation based on device
# if device == "cuda":
# attn_implementation = "sdpa"
# dtype = torch.bfloat16
# print("Using sdpa for GPU")
# else:
# attn_implementation = "eager" # Best for CPU
# dtype = torch.float32
# print("Using eager attention for CPU")
# # Initialize the LightOnOCR model and processor
# print(f"Loading model on {device} with {attn_implementation} attention...")
# model = LightOnOCRForConditionalGeneration.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# attn_implementation=attn_implementation,
# torch_dtype=dtype,
# trust_remote_code=True
# ).to(device).eval()
# processor = LightOnOCRProcessor.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# trust_remote_code=True
# )
# print("Model loaded successfully!")
# # ---- LOAD CLINICAL NER MODEL (BC5CDR) ----
# print("Loading clinical NER model (bc5cdr)...")
# nlp_ner = spacy.load("en_ner_bc5cdr_md")
# print("Clinical NER loaded.")
# def render_pdf_page(page, max_resolution=1540, scale=2.77):
# """Render a PDF page to PIL Image."""
# width, height = page.get_size()
# pixel_width = width * scale
# pixel_height = height * scale
# resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
# target_scale = scale * resize_factor
# return page.render(scale=target_scale, rev_byteorder=True).to_pil()
# def process_pdf(pdf_path, page_num=1):
# """Extract a specific page from PDF."""
# pdf = pdfium.PdfDocument(pdf_path)
# total_pages = len(pdf)
# page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
# page = pdf[page_idx]
# img = render_pdf_page(page)
# pdf.close()
# return img, total_pages, page_idx + 1
# def clean_output_text(text):
# """Remove chat template artifacts from output."""
# markers_to_remove = ["system", "user", "assistant"]
# lines = text.split('\n')
# cleaned_lines = []
# for line in lines:
# stripped = line.strip()
# # Skip lines that are just template markers
# if stripped.lower() not in markers_to_remove:
# cleaned_lines.append(line)
# cleaned = '\n'.join(cleaned_lines).strip()
# if "assistant" in text.lower():
# parts = text.split("assistant", 1)
# if len(parts) > 1:
# cleaned = parts[1].strip()
# return cleaned
# def extract_medication_names(text):
# """Extract medication names using clinical NER (spacy: bc5cdr CHEMICAL)."""
# doc = nlp_ner(text)
# meds = [ent.text for ent in doc.ents if ent.label_ == "CHEMICAL"]
# meds_unique = list(dict.fromkeys(meds))
# return meds_unique
# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2, stream=False):
# """Extract text from image using LightOnOCR model."""
# chat = [
# {
# "role": "user",
# "content": [
# {"type": "image", "url": image},
# ],
# }
# ]
# inputs = processor.apply_chat_template(
# chat,
# add_generation_prompt=True,
# tokenize=True,
# return_dict=True,
# return_tensors="pt"
# )
# inputs = {
# k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
# else v.to(device) if isinstance(v, torch.Tensor)
# else v
# for k, v in inputs.items()
# }
# generation_kwargs = dict(
# **inputs,
# max_new_tokens=2048,
# temperature=temperature if temperature > 0 else 0.0,
# use_cache=True,
# do_sample=temperature > 0,
# )
# if stream:
# # Streaming generation
# streamer = TextIteratorStreamer(
# processor.tokenizer,
# skip_prompt=True,
# skip_special_tokens=True
# )
# generation_kwargs["streamer"] = streamer
# thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# full_text = ""
# for new_text in streamer:
# full_text += new_text
# cleaned_text = clean_output_text(full_text)
# yield cleaned_text
# thread.join()
# else:
# # Non-streaming generation
# with torch.no_grad():
# outputs = model.generate(**generation_kwargs)
# output_text = processor.decode(outputs[0], skip_special_tokens=True)
# cleaned_text = clean_output_text(output_text)
# yield cleaned_text
# def process_input(file_input, temperature, page_num, enable_streaming):
# """Process uploaded file (image or PDF) and extract medication names via OCR+NER."""
# if file_input is None:
# yield "Please upload an image or PDF first.", "", "", None, gr.update()
# return
# image_to_process = None
# page_info = ""
# file_path = file_input if isinstance(file_input, str) else file_input.name
# # Handle PDF files
# if file_path.lower().endswith('.pdf'):
# try:
# image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
# page_info = f"Processing page {actual_page} of {total_pages}"
# except Exception as e:
# yield f"Error processing PDF: {str(e)}", "", "", None, gr.update()
# return
# # Handle image files
# else:
# try:
# image_to_process = Image.open(file_path)
# page_info = "Processing image"
# except Exception as e:
# yield f"Error opening image: {str(e)}", "", "", None, gr.update()
# return
# try:
# for extracted_text in extract_text_from_image(image_to_process, temperature, stream=enable_streaming):
# meds = extract_medication_names(extracted_text)
# meds_str = "\n".join(meds) if meds else "No medications found."
# yield meds_str, meds_str, page_info, image_to_process, gr.update()
# except Exception as e:
# error_msg = f"Error during text extraction: {str(e)}"
# yield error_msg, error_msg, page_info, image_to_process, gr.update()
# def update_slider(file_input):
# """Update page slider based on PDF page count."""
# if file_input is None:
# return gr.update(maximum=20, value=1)
# file_path = file_input if isinstance(file_input, str) else file_input.name
# if file_path.lower().endswith('.pdf'):
# try:
# pdf = pdfium.PdfDocument(file_path)
# total_pages = len(pdf)
# pdf.close()
# return gr.update(maximum=total_pages, value=1)
# except:
# return gr.update(maximum=20, value=1)
# else:
# return gr.update(maximum=1, value=1)
# # ----- GRADIO UI -----
# with gr.Blocks(title="📖 Image/PDF OCR + Clinical NER", theme=gr.themes.Soft()) as demo:
# gr.Markdown(f"""
# # 📖 Medication Extraction from Image/PDF with LightOnOCR + Clinical NER
# **💡 How to use:**
# 1. Upload an image or PDF
# 2. For PDFs: select which page to extract
# 3. Adjust temperature if needed
# 4. Click "Extract Medications"
# **Output:** Only medication names found in text (via NER)
# **Model:** LightOnOCR-1B-1025 by LightOn AI
# **Device:** {device.upper()}
# **Attention:** {attn_implementation}
# """)
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="🖼️ Upload Image or PDF",
# file_types=[".pdf", ".png", ".jpg", ".jpeg"],
# type="filepath"
# )
# rendered_image = gr.Image(
# label="📄 Preview",
# type="pil",
# height=400,
# interactive=False
# )
# num_pages = gr.Slider(
# minimum=1,
# maximum=20,
# value=1,
# step=1,
# label="PDF: Page Number",
# info="Select which page to extract"
# )
# page_info = gr.Textbox(
# label="Processing Info",
# value="",
# interactive=False
# )
# temperature = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.2,
# step=0.05,
# label="Temperature",
# info="0.0 = deterministic, Higher = more varied"
# )
# enable_streaming = gr.Checkbox(
# label="Enable Streaming",
# value=True,
# info="Show text progressively as it's generated"
# )
# submit_btn = gr.Button("Extract Medications", variant="primary")
# clear_btn = gr.Button("Clear", variant="secondary")
# with gr.Column(scale=2):
# output_text = gr.Markdown(
# label="🩺 Extracted Medication Names",
# value="*Medication names will appear here...*"
# )
# with gr.Row():
# with gr.Column():
# raw_output = gr.Textbox(
# label="Extracted Medication Names (Raw)",
# placeholder="Medication list will appear here...",
# lines=20,
# max_lines=30,
# show_copy_button=True
# )
# # Event handlers
# submit_btn.click(
# fn=process_input,
# inputs=[file_input, temperature, num_pages, enable_streaming],
# outputs=[output_text, raw_output, page_info, rendered_image, num_pages]
# )
# file_input.change(
# fn=update_slider,
# inputs=[file_input],
# outputs=[num_pages]
# )
# clear_btn.click(
# fn=lambda: (None, "*Medication names will appear here...*", "", "", None, 1),
# outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
# )
# if __name__ == "__main__":
# demo.launch()