LightOnOCR / app.py
IFMedTechdemo's picture
Update app.py
c9ad6ed verified
raw
history blame
32.7 kB
#################################################################################################
# import subprocess
# import sys
# import spaces
# import torch
# import gradio as gr
# from PIL import Image
# import numpy as np
# import cv2
# import pypdfium2 as pdfium
# from transformers import (
# LightOnOCRForConditionalGeneration,
# LightOnOCRProcessor,
# )
# from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
# import re
# device = "cuda" if torch.cuda.is_available() else "cpu"
# if device == "cuda":
# attn_implementation = "sdpa"
# dtype = torch.bfloat16
# else:
# attn_implementation = "eager"
# dtype = torch.float32
# ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# attn_implementation=attn_implementation,
# torch_dtype=dtype,
# trust_remote_code=True,
# ).to(device).eval()
# processor = LightOnOCRProcessor.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# trust_remote_code=True,
# )
# ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
# ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
# ner_pipeline = pipeline(
# "ner",
# model=ner_model,
# tokenizer=ner_tokenizer,
# aggregation_strategy="simple",
# )
# def render_pdf_page(page, max_resolution=1540, scale=2.77):
# width, height = page.get_size()
# pixel_width = width * scale
# pixel_height = height * scale
# resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
# target_scale = scale * resize_factor
# return page.render(scale=target_scale, rev_byteorder=True).to_pil()
# def process_pdf(pdf_path, page_num=1):
# pdf = pdfium.PdfDocument(pdf_path)
# total_pages = len(pdf)
# page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
# page = pdf[page_idx]
# img = render_pdf_page(page)
# pdf.close()
# return img, total_pages, page_idx + 1
# def clean_output_text(text):
# markers_to_remove = ["system", "user", "assistant"]
# lines = text.split('\n')
# cleaned_lines = []
# for line in lines:
# stripped = line.strip()
# if stripped.lower() not in markers_to_remove:
# cleaned_lines.append(line)
# cleaned = '\n'.join(cleaned_lines).strip()
# if "assistant" in text.lower():
# parts = text.split("assistant", 1)
# if len(parts) > 1:
# cleaned = parts[1].strip()
# return cleaned
# def preprocess_image_for_ocr(image):
# image_rgb = image.convert("RGB")
# img_np = np.array(image_rgb)
# gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
# adaptive_threshold = cv2.adaptiveThreshold(
# gray,
# 255,
# cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
# cv2.THRESH_BINARY,
# 85,
# 11,
# )
# preprocessed_pil = Image.fromarray(adaptive_threshold)
# return preprocessed_pil
# def extract_medication_lines(text):
# """
# Extracts medication/drug lines from text using regex.
# Matches lines beginning with tab, tablet, cap, capsule, syrup, syp, oral, inj, injection, ointment, drops, patch, sol, solution, etc.
# Handles case-insensitivity and abbreviations like T., C., tab., cap. etc.
# """
# # "|" means OR. (?:...) is a non-capturing group.
# pattern = r"""^\s* # Leading spaces allowed
# (
# T\.?|TAB\.?|TABLET # T., T, TAB, TAB., TABLET
# |C\.?|CAP\.?|CAPSULE # C., C, CAP, CAP., CAPSULE
# |SYRUP|SYP
# |ORAL
# |INJ\.?|INJECTION # INJ., INJ, INJECTION
# |OINTMENT|DROPS|PATCH|SOL\.?|SOLUTION
# )
# \s+[A-Z0-9 \-\(\)/,.]+ # Name/dose/other info (at least one space/letter after the pattern)
# """
# # Compile with re.IGNORECASE and re.VERBOSE for readability
# med_regex = re.compile(pattern, re.IGNORECASE | re.VERBOSE)
# meds = []
# for line in text.split('\n'):
# line = line.strip()
# if med_regex.match(line):
# meds.append(line)
# return '\n'.join(meds)
# def extract_meds(text, use_ner):
# """
# Switches between Clinical NER or regex extraction.
# Returns medications string.
# """
# if use_ner:
# entities = ner_pipeline(text)
# meds = []
# for ent in entities:
# if ent["entity_group"] == "treatment":
# word = ent["word"]
# if word.startswith("##") and meds:
# meds[-1] += word[2:]
# else:
# meds.append(word)
# return ", ".join(set(meds)) if meds else "None detected"
# else:
# return extract_medication_lines(text) or "None detected"
# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2):
# """OCR with adaptive thresholding."""
# processed_img = preprocess_image_for_ocr(image)
# chat = [
# {
# "role": "user",
# "content": [
# {"type": "image", "image": processed_img}
# ],
# }
# ]
# inputs = processor.apply_chat_template(
# chat,
# add_generation_prompt=True,
# tokenize=True,
# return_dict=True,
# return_tensors="pt",
# )
# # Move inputs to device
# inputs = {
# k: (
# v.to(device=device, dtype=dtype)
# if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
# else v.to(device)
# if isinstance(v, torch.Tensor)
# else v
# )
# for k, v in inputs.items()
# }
# generation_kwargs = dict(
# **inputs,
# max_new_tokens=2048,
# temperature=temperature if temperature > 0 else 0.0,
# use_cache=True,
# do_sample=temperature > 0,
# )
# with torch.no_grad():
# outputs = ocr_model.generate(**generation_kwargs)
# output_text = processor.decode(outputs[0], skip_special_tokens=True)
# cleaned_text = clean_output_text(output_text)
# yield cleaned_text, output_text, processed_img
# def process_input(file_input, temperature, page_num, extraction_mode):
# if file_input is None:
# yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
# return
# image_to_process = None
# page_info = ""
# slider_value = page_num
# file_path = file_input if isinstance(file_input, str) else file_input.name
# if file_path.lower().endswith(".pdf"):
# try:
# image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
# page_info = f"Processing page {actual_page} of {total_pages}"
# slider_value = actual_page
# except Exception as e:
# msg = f"Error processing PDF: {str(e)}"
# yield msg, "", msg, "", None, slider_value
# return
# else:
# try:
# image_to_process = Image.open(file_path)
# page_info = "Processing image"
# except Exception as e:
# msg = f"Error opening image: {str(e)}"
# yield msg, "", msg, "", None, slider_value
# return
# use_ner = extraction_mode == "Regex" #"Clinical NER"
# try:
# for cleaned_text, raw_md, processed_img in extract_text_from_image(
# image_to_process, temperature
# ):
# meds_out = extract_meds(cleaned_text, use_ner)
# yield cleaned_text, meds_out, raw_md, page_info, processed_img, slider_value
# except Exception as e:
# error_msg = f"Error during text extraction: {str(e)}"
# yield error_msg, "", error_msg, page_info, image_to_process, slider_value
# def update_slider(file_input):
# if file_input is None:
# return gr.update(maximum=20, value=1)
# file_path = file_input if isinstance(file_input, str) else file_input.name
# if file_path.lower().endswith('.pdf'):
# try:
# pdf = pdfium.PdfDocument(file_path)
# total_pages = len(pdf)
# pdf.close()
# return gr.update(maximum=total_pages, value=1)
# except:
# return gr.update(maximum=20, value=1)
# else:
# return gr.update(maximum=1, value=1)
# with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo:
# file_input = gr.File(
# label="🖼️ Upload Image or PDF",
# file_types=[".pdf", ".png", ".jpg", ".jpeg"],
# type="filepath"
# )
# temperature = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.2,
# step=0.05,
# label="Temperature"
# )
# page_slider = gr.Slider(
# minimum=1, maximum=20, value=1, step=1,
# label="Page Number (PDF only)",
# interactive=True
# )
# extraction_mode = gr.Radio(
# choices=["Clinical NER", "Regex"],
# value="Regex",
# label="Extraction Method",
# info="Clinical NER uses ML, Regex uses rules"
# )
# output_text = gr.Textbox(
# label="📝 Extracted Text",
# lines=4,
# max_lines=10,
# interactive=False,
# show_copy_button=True
# )
# medicines_output = gr.Textbox(
# label="💊 Extracted Medicines/Drugs",
# placeholder="Medicine/drug names will appear here...",
# lines=2,
# max_lines=10,
# interactive=False,
# show_copy_button=True
# )
# raw_output = gr.Textbox(
# label="Raw Model Output",
# lines=2,
# max_lines=5,
# interactive=False
# )
# page_info = gr.Markdown(
# value="" # Info of PDF page
# )
# rendered_image = gr.Image(
# label="Processed Image (Thresholded for OCR)",
# interactive=False
# )
# num_pages = gr.Number(
# value=1, label="Current Page (slider)", visible=False
# )
# submit_btn = gr.Button("Extract Medicines", variant="primary")
# submit_btn.click(
# fn=process_input,
# inputs=[file_input, temperature, page_slider, extraction_mode],
# outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
# )
# file_input.change(
# fn=update_slider,
# inputs=[file_input],
# outputs=[page_slider]
# )
# if __name__ == "__main__":
# demo.launch()
#################################################### running code only NER #######################
#!/usr/bin/env python3
import subprocess
import sys
import spaces
import torch
import gradio as gr
from PIL import Image
import numpy as np
import cv2
import pypdfium2 as pdfium
from transformers import (
LightOnOCRForConditionalGeneration,
LightOnOCRProcessor,
)
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
attn_implementation = "sdpa"
dtype = torch.bfloat16
else:
attn_implementation = "eager"
dtype = torch.float32
ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
attn_implementation=attn_implementation,
torch_dtype=dtype,
trust_remote_code=True,
).to(device).eval()
processor = LightOnOCRProcessor.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
trust_remote_code=True,
)
ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
ner_pipeline = pipeline(
"ner",
model=ner_model,
tokenizer=ner_tokenizer,
aggregation_strategy="simple",
)
def render_pdf_page(page, max_resolution=1540, scale=2.77):
width, height = page.get_size()
pixel_width = width * scale
pixel_height = height * scale
resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
target_scale = scale * resize_factor
return page.render(scale=target_scale, rev_byteorder=True).to_pil()
def process_pdf(pdf_path, page_num=1):
pdf = pdfium.PdfDocument(pdf_path)
total_pages = len(pdf)
page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
page = pdf[page_idx]
img = render_pdf_page(page)
pdf.close()
return img, total_pages, page_idx + 1
def clean_output_text(text):
markers_to_remove = ["system", "user", "assistant"]
lines = text.split('\n')
cleaned_lines = []
for line in lines:
stripped = line.strip()
if stripped.lower() not in markers_to_remove:
cleaned_lines.append(line)
cleaned = '\n'.join(cleaned_lines).strip()
if "assistant" in text.lower():
parts = text.split("assistant", 1)
if len(parts) > 1:
cleaned = parts[1].strip()
return cleaned
def preprocess_image_for_ocr(image):
"""Convert PIL.Image to adaptive thresholded image for OCR."""
image_rgb = image.convert("RGB")
img_np = np.array(image_rgb)
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
adaptive_threshold = cv2.adaptiveThreshold(
gray,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY,
85,
11,
)
preprocessed_pil = Image.fromarray(adaptive_threshold)
return preprocessed_pil
@spaces.GPU
def extract_text_from_image(image, temperature=0.2):
"""OCR + clinical NER, with preprocessing."""
processed_img = preprocess_image_for_ocr(image)
chat = [
{
"role": "user",
"content": [
{"type": "image", "image": processed_img}
],
}
]
inputs = processor.apply_chat_template(
chat,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
# Move inputs to device
inputs = {
k: (
v.to(device=device, dtype=dtype)
if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
else v.to(device)
if isinstance(v, torch.Tensor)
else v
)
for k, v in inputs.items()
}
generation_kwargs = dict(
**inputs,
max_new_tokens=2048,
temperature=temperature if temperature > 0 else 0.0,
use_cache=True,
do_sample=temperature > 0,
)
with torch.no_grad():
outputs = ocr_model.generate(**generation_kwargs)
output_text = processor.decode(outputs[0], skip_special_tokens=True)
cleaned_text = clean_output_text(output_text)
entities = ner_pipeline(cleaned_text)
medications = []
for ent in entities:
if ent["entity_group"] == "treatment":
word = ent["word"]
if word.startswith("##") and medications:
medications[-1] += word[2:]
else:
medications.append(word)
medications_str = ", ".join(set(medications)) if medications else "None detected"
yield cleaned_text, medications_str, output_text, processed_img
def process_input(file_input, temperature, page_num):
if file_input is None:
yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
return
image_to_process = None
page_info = ""
slider_value = page_num
file_path = file_input if isinstance(file_input, str) else file_input.name
if file_path.lower().endswith(".pdf"):
try:
image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
page_info = f"Processing page {actual_page} of {total_pages}"
slider_value = actual_page
except Exception as e:
msg = f"Error processing PDF: {str(e)}"
yield msg, "", msg, "", None, slider_value
return
else:
try:
image_to_process = Image.open(file_path)
page_info = "Processing image"
except Exception as e:
msg = f"Error opening image: {str(e)}"
yield msg, "", msg, "", None, slider_value
return
try:
for cleaned_text, medications, raw_md, processed_img in extract_text_from_image(
image_to_process, temperature
):
yield cleaned_text, medications, raw_md, page_info, processed_img, slider_value
except Exception as e:
error_msg = f"Error during text extraction: {str(e)}"
yield error_msg, "", error_msg, page_info, image_to_process, slider_value
def update_slider(file_input):
if file_input is None:
return gr.update(maximum=20, value=1)
file_path = file_input if isinstance(file_input, str) else file_input.name
if file_path.lower().endswith('.pdf'):
try:
pdf = pdfium.PdfDocument(file_path)
total_pages = len(pdf)
pdf.close()
return gr.update(maximum=total_pages, value=1)
except:
return gr.update(maximum=20, value=1)
else:
return gr.update(maximum=1, value=1)
with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo:
file_input = gr.File(
label="🖼️ Upload Image or PDF",
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
type="filepath"
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.05,
label="Temperature"
)
page_slider = gr.Slider(
minimum=1, maximum=20, value=1, step=1,
label="Page Number (PDF only)",
interactive=True
)
output_text = gr.Textbox(
label="📝 Extracted Text",
lines=4,
max_lines=10,
interactive=False,
show_copy_button=True
)
medicines_output = gr.Textbox(
label="💊 Extracted Medicines/Drugs",
placeholder="Medicine/drug names will appear here...",
lines=2,
max_lines=5,
interactive=False,
show_copy_button=True
)
raw_output = gr.Textbox(
label="Raw Model Output",
lines=2,
max_lines=5,
interactive=False
)
page_info = gr.Markdown(
value="" # Info of PDF page
)
rendered_image = gr.Image(
label="Processed Image (Thresholded for OCR)",
interactive=False
)
num_pages = gr.Number(
value=1, label="Current Page (slider)", visible=False
)
submit_btn = gr.Button("Extract Medicines", variant="primary")
submit_btn.click(
fn=process_input,
inputs=[file_input, temperature, page_slider],
outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
)
file_input.change(
fn=update_slider,
inputs=[file_input],
outputs=[page_slider]
)
if __name__ == "__main__":
demo.launch()
########################################## #############################################################
# Create Gradio interface
# with gr.Blocks(title="📖 Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo:
# gr.Markdown(f"""
# # 📖 Image/PDF to Text Extraction with LightOnOCR
# **💡 How to use:**
# 1. Upload an image or PDF
# 2. For PDFs: select which page to extract (1-20)
# 3. Adjust temperature if needed
# 4. Click "Extract Text"
# **Note:** The Markdown rendering for tables may not always be perfect. Check the raw output for complex tables!
# **Model:** LightOnOCR-1B-1025 by LightOn AI
# **Device:** {device.upper()}
# **Attention:** {attn_implementation}
# """)
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="🖼️ Upload Image or PDF",
# file_types=[".pdf", ".png", ".jpg", ".jpeg"],
# type="filepath"
# )
# rendered_image = gr.Image(
# label="📄 Preview",
# type="pil",
# height=400,
# interactive=False
# )
# num_pages = gr.Slider(
# minimum=1,
# maximum=20,
# value=1,
# step=1,
# label="PDF: Page Number",
# info="Select which page to extract"
# )
# page_info = gr.Textbox(
# label="Processing Info",
# value="",
# interactive=False
# )
# temperature = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.2,
# step=0.05,
# label="Temperature",
# info="0.0 = deterministic, Higher = more varied"
# )
# submit_btn = gr.Button("Extract Text", variant="primary")
# clear_btn = gr.Button("Clear", variant="secondary")
# with gr.Column(scale=2):
# output_text = gr.Markdown(
# label="📄 Extracted Text (Rendered)",
# value="*Extracted text will appear here...*"
# )
# medications_output = gr.Textbox(
# label="💊 Extracted Medicines/Drugs",
# placeholder="Medicine/drug names will appear here...",
# lines=2,
# max_lines=5,
# interactive=False,
# show_copy_button=True
# )
# with gr.Row():
# with gr.Column():
# raw_output = gr.Textbox(
# label="Raw Markdown Output",
# placeholder="Raw text will appear here...",
# lines=20,
# max_lines=30,
# show_copy_button=True
# )
# # Event handlers
# submit_btn.click(
# fn=process_input,
# inputs=[file_input, temperature, num_pages, ],
# outputs=[output_text, medications_output, raw_output, page_info, rendered_image, num_pages]
# )
#################################### old code to be checked #############################################
# import sys
# import threading
# import spaces
# import torch
# import gradio as gr
# from PIL import Image
# from io import BytesIO
# import pypdfium2 as pdfium
# from transformers import (
# LightOnOCRForConditionalGeneration,
# LightOnOCRProcessor,
# TextIteratorStreamer,
# )
# # ---- CLINICAL NER IMPORTS ----
# import spacy
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Choose best attention implementation based on device
# if device == "cuda":
# attn_implementation = "sdpa"
# dtype = torch.bfloat16
# print("Using sdpa for GPU")
# else:
# attn_implementation = "eager" # Best for CPU
# dtype = torch.float32
# print("Using eager attention for CPU")
# # Initialize the LightOnOCR model and processor
# print(f"Loading model on {device} with {attn_implementation} attention...")
# model = LightOnOCRForConditionalGeneration.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# attn_implementation=attn_implementation,
# torch_dtype=dtype,
# trust_remote_code=True
# ).to(device).eval()
# processor = LightOnOCRProcessor.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# trust_remote_code=True
# )
# print("Model loaded successfully!")
# # ---- LOAD CLINICAL NER MODEL (BC5CDR) ----
# print("Loading clinical NER model (bc5cdr)...")
# nlp_ner = spacy.load("en_ner_bc5cdr_md")
# print("Clinical NER loaded.")
# def render_pdf_page(page, max_resolution=1540, scale=2.77):
# """Render a PDF page to PIL Image."""
# width, height = page.get_size()
# pixel_width = width * scale
# pixel_height = height * scale
# resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
# target_scale = scale * resize_factor
# return page.render(scale=target_scale, rev_byteorder=True).to_pil()
# def process_pdf(pdf_path, page_num=1):
# """Extract a specific page from PDF."""
# pdf = pdfium.PdfDocument(pdf_path)
# total_pages = len(pdf)
# page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
# page = pdf[page_idx]
# img = render_pdf_page(page)
# pdf.close()
# return img, total_pages, page_idx + 1
# def clean_output_text(text):
# """Remove chat template artifacts from output."""
# markers_to_remove = ["system", "user", "assistant"]
# lines = text.split('\n')
# cleaned_lines = []
# for line in lines:
# stripped = line.strip()
# # Skip lines that are just template markers
# if stripped.lower() not in markers_to_remove:
# cleaned_lines.append(line)
# cleaned = '\n'.join(cleaned_lines).strip()
# if "assistant" in text.lower():
# parts = text.split("assistant", 1)
# if len(parts) > 1:
# cleaned = parts[1].strip()
# return cleaned
# def extract_medication_names(text):
# """Extract medication names using clinical NER (spacy: bc5cdr CHEMICAL)."""
# doc = nlp_ner(text)
# meds = [ent.text for ent in doc.ents if ent.label_ == "CHEMICAL"]
# meds_unique = list(dict.fromkeys(meds))
# return meds_unique
# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2, stream=False):
# """Extract text from image using LightOnOCR model."""
# chat = [
# {
# "role": "user",
# "content": [
# {"type": "image", "url": image},
# ],
# }
# ]
# inputs = processor.apply_chat_template(
# chat,
# add_generation_prompt=True,
# tokenize=True,
# return_dict=True,
# return_tensors="pt"
# )
# inputs = {
# k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
# else v.to(device) if isinstance(v, torch.Tensor)
# else v
# for k, v in inputs.items()
# }
# generation_kwargs = dict(
# **inputs,
# max_new_tokens=2048,
# temperature=temperature if temperature > 0 else 0.0,
# use_cache=True,
# do_sample=temperature > 0,
# )
# if stream:
# # Streaming generation
# streamer = TextIteratorStreamer(
# processor.tokenizer,
# skip_prompt=True,
# skip_special_tokens=True
# )
# generation_kwargs["streamer"] = streamer
# thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# full_text = ""
# for new_text in streamer:
# full_text += new_text
# cleaned_text = clean_output_text(full_text)
# yield cleaned_text
# thread.join()
# else:
# # Non-streaming generation
# with torch.no_grad():
# outputs = model.generate(**generation_kwargs)
# output_text = processor.decode(outputs[0], skip_special_tokens=True)
# cleaned_text = clean_output_text(output_text)
# yield cleaned_text
# def process_input(file_input, temperature, page_num, enable_streaming):
# """Process uploaded file (image or PDF) and extract medication names via OCR+NER."""
# if file_input is None:
# yield "Please upload an image or PDF first.", "", "", None, gr.update()
# return
# image_to_process = None
# page_info = ""
# file_path = file_input if isinstance(file_input, str) else file_input.name
# # Handle PDF files
# if file_path.lower().endswith('.pdf'):
# try:
# image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
# page_info = f"Processing page {actual_page} of {total_pages}"
# except Exception as e:
# yield f"Error processing PDF: {str(e)}", "", "", None, gr.update()
# return
# # Handle image files
# else:
# try:
# image_to_process = Image.open(file_path)
# page_info = "Processing image"
# except Exception as e:
# yield f"Error opening image: {str(e)}", "", "", None, gr.update()
# return
# try:
# for extracted_text in extract_text_from_image(image_to_process, temperature, stream=enable_streaming):
# meds = extract_medication_names(extracted_text)
# meds_str = "\n".join(meds) if meds else "No medications found."
# yield meds_str, meds_str, page_info, image_to_process, gr.update()
# except Exception as e:
# error_msg = f"Error during text extraction: {str(e)}"
# yield error_msg, error_msg, page_info, image_to_process, gr.update()
# def update_slider(file_input):
# """Update page slider based on PDF page count."""
# if file_input is None:
# return gr.update(maximum=20, value=1)
# file_path = file_input if isinstance(file_input, str) else file_input.name
# if file_path.lower().endswith('.pdf'):
# try:
# pdf = pdfium.PdfDocument(file_path)
# total_pages = len(pdf)
# pdf.close()
# return gr.update(maximum=total_pages, value=1)
# except:
# return gr.update(maximum=20, value=1)
# else:
# return gr.update(maximum=1, value=1)
# # ----- GRADIO UI -----
# with gr.Blocks(title="📖 Image/PDF OCR + Clinical NER", theme=gr.themes.Soft()) as demo:
# gr.Markdown(f"""
# # 📖 Medication Extraction from Image/PDF with LightOnOCR + Clinical NER
# **💡 How to use:**
# 1. Upload an image or PDF
# 2. For PDFs: select which page to extract
# 3. Adjust temperature if needed
# 4. Click "Extract Medications"
# **Output:** Only medication names found in text (via NER)
# **Model:** LightOnOCR-1B-1025 by LightOn AI
# **Device:** {device.upper()}
# **Attention:** {attn_implementation}
# """)
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="🖼️ Upload Image or PDF",
# file_types=[".pdf", ".png", ".jpg", ".jpeg"],
# type="filepath"
# )
# rendered_image = gr.Image(
# label="📄 Preview",
# type="pil",
# height=400,
# interactive=False
# )
# num_pages = gr.Slider(
# minimum=1,
# maximum=20,
# value=1,
# step=1,
# label="PDF: Page Number",
# info="Select which page to extract"
# )
# page_info = gr.Textbox(
# label="Processing Info",
# value="",
# interactive=False
# )
# temperature = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.2,
# step=0.05,
# label="Temperature",
# info="0.0 = deterministic, Higher = more varied"
# )
# enable_streaming = gr.Checkbox(
# label="Enable Streaming",
# value=True,
# info="Show text progressively as it's generated"
# )
# submit_btn = gr.Button("Extract Medications", variant="primary")
# clear_btn = gr.Button("Clear", variant="secondary")
# with gr.Column(scale=2):
# output_text = gr.Markdown(
# label="🩺 Extracted Medication Names",
# value="*Medication names will appear here...*"
# )
# with gr.Row():
# with gr.Column():
# raw_output = gr.Textbox(
# label="Extracted Medication Names (Raw)",
# placeholder="Medication list will appear here...",
# lines=20,
# max_lines=30,
# show_copy_button=True
# )
# # Event handlers
# submit_btn.click(
# fn=process_input,
# inputs=[file_input, temperature, num_pages, enable_streaming],
# outputs=[output_text, raw_output, page_info, rendered_image, num_pages]
# )
# file_input.change(
# fn=update_slider,
# inputs=[file_input],
# outputs=[num_pages]
# )
# clear_btn.click(
# fn=lambda: (None, "*Medication names will appear here...*", "", "", None, 1),
# outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
# )
# if __name__ == "__main__":
# demo.launch()