Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
| 5 |
-
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
| 6 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 7 |
-
from huggingface_hub import InferenceClient
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
| 9 |
|
|
|
|
| 10 |
# Ensure HF_TOKEN is set
|
| 11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 12 |
if not HF_TOKEN:
|
|
@@ -27,13 +28,15 @@ Settings.llm = HuggingFaceInferenceAPI(
|
|
| 27 |
max_new_tokens=512,
|
| 28 |
generate_kwargs={"temperature": 0.1},
|
| 29 |
)
|
| 30 |
-
|
| 31 |
-
#
|
|
|
|
|
|
|
| 32 |
Settings.embed_model = HuggingFaceEmbedding(
|
| 33 |
-
model_name="xlm-roberta-base" #
|
| 34 |
)
|
| 35 |
|
| 36 |
-
# Configure tokenizer and model
|
| 37 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
| 38 |
model = AutoModel.from_pretrained("xlm-roberta-base")
|
| 39 |
|
|
@@ -46,73 +49,77 @@ os.makedirs(PERSIST_DIR, exist_ok=True)
|
|
| 46 |
chat_history = []
|
| 47 |
current_chat_history = []
|
| 48 |
|
| 49 |
-
# Data ingestion function
|
| 50 |
def data_ingestion_from_directory():
|
|
|
|
| 51 |
if os.path.exists(PERSIST_DIR):
|
| 52 |
-
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and its contents
|
| 53 |
|
|
|
|
| 54 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
|
|
|
|
|
|
| 55 |
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
|
|
|
|
|
|
| 56 |
index = VectorStoreIndex.from_documents(new_documents)
|
|
|
|
|
|
|
| 57 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 58 |
|
| 59 |
-
|
| 60 |
-
def handle_query(query, selected_language):
|
| 61 |
context_str = ""
|
| 62 |
|
| 63 |
# Build context from current chat history
|
| 64 |
for past_query, response in reversed(current_chat_history):
|
| 65 |
if past_query.strip():
|
| 66 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
| 67 |
-
|
| 68 |
-
# Define the response template based on selected language
|
| 69 |
-
if selected_language == 'telugu':
|
| 70 |
-
language_prompt = "మీరు తాజ్ హోటల్ చాట్బాట్, తాజ్ హోటల్ సహాయకుడు."
|
| 71 |
-
elif selected_language == 'hindi':
|
| 72 |
-
language_prompt = "आप ताज होटल चैटबोट हैं, ताज होटल सहायक।"
|
| 73 |
-
else:
|
| 74 |
-
language_prompt = "You are the Taj Hotel chatbot, Taj Hotel Helper."
|
| 75 |
|
| 76 |
chat_text_qa_msgs = [
|
| 77 |
(
|
| 78 |
"user",
|
| 79 |
-
|
| 80 |
-
{language_prompt}
|
| 81 |
|
| 82 |
-
|
| 83 |
- Respond accurately and concisely in the user's preferred language (English, Telugu, or Hindi).
|
| 84 |
- Provide information about the hotel’s services, amenities, and policies.
|
| 85 |
|
| 86 |
-
|
| 87 |
-
-
|
| 88 |
{context_str}
|
| 89 |
-
-
|
| 90 |
-
{
|
| 91 |
|
| 92 |
-
|
| 93 |
-
1.
|
| 94 |
-
2.
|
| 95 |
-
3.
|
| 96 |
-
4.
|
| 97 |
-
|
| 98 |
-
5.
|
| 99 |
|
| 100 |
-
|
| 101 |
-
"""
|
| 102 |
)
|
| 103 |
]
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
# Load the index for querying
|
| 108 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
| 109 |
index = load_index_from_storage(storage_context)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
|
| 112 |
print(f"Querying: {query}")
|
| 113 |
answer = query_engine.query(query)
|
| 114 |
|
| 115 |
-
# Extracting the response
|
| 116 |
if hasattr(answer, 'response'):
|
| 117 |
response = answer.response
|
| 118 |
elif isinstance(answer, dict) and 'response' in answer:
|
|
@@ -124,16 +131,16 @@ def handle_query(query, selected_language):
|
|
| 124 |
current_chat_history.append((query, response))
|
| 125 |
return response
|
| 126 |
|
| 127 |
-
app = Flask(
|
| 128 |
|
| 129 |
# Data ingestion
|
| 130 |
data_ingestion_from_directory()
|
| 131 |
|
| 132 |
# Generate Response
|
| 133 |
-
def generate_response(query
|
| 134 |
try:
|
| 135 |
# Call the handle_query function to get the response
|
| 136 |
-
bot_response = handle_query(query
|
| 137 |
return bot_response
|
| 138 |
except Exception as e:
|
| 139 |
return f"Error fetching the response: {str(e)}"
|
|
@@ -148,17 +155,13 @@ def index():
|
|
| 148 |
def chat():
|
| 149 |
try:
|
| 150 |
user_message = request.json.get("message")
|
| 151 |
-
selected_language = request.json.get("language") # Get selected language from the request
|
| 152 |
if not user_message:
|
| 153 |
return jsonify({"response": "Please say something!"})
|
| 154 |
|
| 155 |
-
|
| 156 |
-
return jsonify({"response": "Invalid language selected."})
|
| 157 |
-
|
| 158 |
-
bot_response = generate_response(user_message, selected_language)
|
| 159 |
return jsonify({"response": bot_response})
|
| 160 |
except Exception as e:
|
| 161 |
return jsonify({"response": f"An error occurred: {str(e)}"})
|
| 162 |
|
| 163 |
-
if
|
| 164 |
-
app.run(debug=True)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
from flask import Flask, render_template, request, jsonify
|
| 4 |
+
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
| 5 |
+
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
| 6 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 7 |
+
from huggingface_hub import InferenceClient
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
| 9 |
|
| 10 |
+
|
| 11 |
# Ensure HF_TOKEN is set
|
| 12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 13 |
if not HF_TOKEN:
|
|
|
|
| 28 |
max_new_tokens=512,
|
| 29 |
generate_kwargs={"temperature": 0.1},
|
| 30 |
)
|
| 31 |
+
# Settings.embed_model = HuggingFaceEmbedding(
|
| 32 |
+
# model_name="BAAI/bge-small-en-v1.5"
|
| 33 |
+
# )
|
| 34 |
+
# Replace the embedding model with XLM-R
|
| 35 |
Settings.embed_model = HuggingFaceEmbedding(
|
| 36 |
+
model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
|
| 37 |
)
|
| 38 |
|
| 39 |
+
# Configure tokenizer and model if required
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
| 41 |
model = AutoModel.from_pretrained("xlm-roberta-base")
|
| 42 |
|
|
|
|
| 49 |
chat_history = []
|
| 50 |
current_chat_history = []
|
| 51 |
|
|
|
|
| 52 |
def data_ingestion_from_directory():
|
| 53 |
+
# Clear previous data by removing the persist directory
|
| 54 |
if os.path.exists(PERSIST_DIR):
|
| 55 |
+
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents
|
| 56 |
|
| 57 |
+
# Recreate the persist directory after removal
|
| 58 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
| 59 |
+
|
| 60 |
+
# Load new documents from the directory
|
| 61 |
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
| 62 |
+
|
| 63 |
+
# Create a new index with the new documents
|
| 64 |
index = VectorStoreIndex.from_documents(new_documents)
|
| 65 |
+
|
| 66 |
+
# Persist the new index
|
| 67 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 68 |
|
| 69 |
+
def handle_query(query):
|
|
|
|
| 70 |
context_str = ""
|
| 71 |
|
| 72 |
# Build context from current chat history
|
| 73 |
for past_query, response in reversed(current_chat_history):
|
| 74 |
if past_query.strip():
|
| 75 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
chat_text_qa_msgs = [
|
| 78 |
(
|
| 79 |
"user",
|
| 80 |
+
"""You are the Taj Hotel chatbot, Taj Hotel Helper.
|
|
|
|
| 81 |
|
| 82 |
+
*Your Role:*
|
| 83 |
- Respond accurately and concisely in the user's preferred language (English, Telugu, or Hindi).
|
| 84 |
- Provide information about the hotel’s services, amenities, and policies.
|
| 85 |
|
| 86 |
+
*Instructions:*
|
| 87 |
+
- *Context:*
|
| 88 |
{context_str}
|
| 89 |
+
- *User's Question:*
|
| 90 |
+
{query_str}
|
| 91 |
|
| 92 |
+
*Response Guidelines:*
|
| 93 |
+
1. *Language Adaptation:* Respond in the language of the question (English, Telugu, or Hindi).
|
| 94 |
+
2. *Tone:* Maintain politeness, professionalism, and the luxury branding of the Taj Hotel.
|
| 95 |
+
3. *Clarity:* Limit responses to 10-15 words for direct and clear communication.
|
| 96 |
+
4. *Knowledge Boundaries:* If unsure of an answer, respond with:
|
| 97 |
+
"I’m not sure. Please contact our staff for accurate information."
|
| 98 |
+
5. *Actionable Help:* Offer suggestions or alternative steps to guide the user where applicable.
|
| 99 |
|
| 100 |
+
*Response:* [Your concise response here]
|
| 101 |
+
""".format(context_str=context_str, query_str=query)
|
| 102 |
)
|
| 103 |
]
|
| 104 |
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
| 108 |
|
|
|
|
| 109 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
| 110 |
index = load_index_from_storage(storage_context)
|
| 111 |
+
# context_str = ""
|
| 112 |
+
|
| 113 |
+
# # Build context from current chat history
|
| 114 |
+
# for past_query, response in reversed(current_chat_history):
|
| 115 |
+
# if past_query.strip():
|
| 116 |
+
# context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
| 117 |
|
| 118 |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
|
| 119 |
print(f"Querying: {query}")
|
| 120 |
answer = query_engine.query(query)
|
| 121 |
|
| 122 |
+
# Extracting the response
|
| 123 |
if hasattr(answer, 'response'):
|
| 124 |
response = answer.response
|
| 125 |
elif isinstance(answer, dict) and 'response' in answer:
|
|
|
|
| 131 |
current_chat_history.append((query, response))
|
| 132 |
return response
|
| 133 |
|
| 134 |
+
app = Flask(_name_)
|
| 135 |
|
| 136 |
# Data ingestion
|
| 137 |
data_ingestion_from_directory()
|
| 138 |
|
| 139 |
# Generate Response
|
| 140 |
+
def generate_response(query):
|
| 141 |
try:
|
| 142 |
# Call the handle_query function to get the response
|
| 143 |
+
bot_response = handle_query(query)
|
| 144 |
return bot_response
|
| 145 |
except Exception as e:
|
| 146 |
return f"Error fetching the response: {str(e)}"
|
|
|
|
| 155 |
def chat():
|
| 156 |
try:
|
| 157 |
user_message = request.json.get("message")
|
|
|
|
| 158 |
if not user_message:
|
| 159 |
return jsonify({"response": "Please say something!"})
|
| 160 |
|
| 161 |
+
bot_response = generate_response(user_message)
|
|
|
|
|
|
|
|
|
|
| 162 |
return jsonify({"response": bot_response})
|
| 163 |
except Exception as e:
|
| 164 |
return jsonify({"response": f"An error occurred: {str(e)}"})
|
| 165 |
|
| 166 |
+
if _name_ == '_main_':
|
| 167 |
+
app.run(debug=True)
|