Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +1118 -38
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,1120 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import requests
|
| 4 |
+
from bs4 import BeautifulSoup
|
| 5 |
+
import re
|
| 6 |
+
import time
|
| 7 |
+
import nltk
|
| 8 |
+
from nltk.tokenize import word_tokenize
|
| 9 |
+
from nltk.corpus import stopwords
|
| 10 |
+
from collections import Counter
|
| 11 |
+
import json
|
| 12 |
+
import os
|
| 13 |
+
from datetime import datetime, timedelta
|
| 14 |
+
import openai
|
| 15 |
+
from dotenv import load_dotenv
|
| 16 |
+
import traceback
|
| 17 |
+
import plotly.graph_objects as go
|
| 18 |
+
import schedule
|
| 19 |
+
import threading
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
+
|
| 22 |
+
# μλν΄λΌμ°λ μΆκ°
|
| 23 |
+
try:
|
| 24 |
+
from wordcloud import WordCloud
|
| 25 |
+
except ImportError:
|
| 26 |
+
st.error("wordcloud ν¨ν€μ§λ₯Ό μ€μΉν΄μ£ΌμΈμ: pip install wordcloud")
|
| 27 |
+
WordCloud = None
|
| 28 |
+
|
| 29 |
+
# μ€μΌμ€λ¬ μν ν΄λμ€ μΆκ°
|
| 30 |
+
class SchedulerState:
|
| 31 |
+
def __init__(self):
|
| 32 |
+
self.is_running = False
|
| 33 |
+
self.thread = None
|
| 34 |
+
self.last_run = None
|
| 35 |
+
self.next_run = None
|
| 36 |
+
self.scheduled_jobs = []
|
| 37 |
+
self.scheduled_results = []
|
| 38 |
+
|
| 39 |
+
# μ μ μ€μΌμ€λ¬ μν κ°μ²΄ μμ± (μ€λ λ μμμ μ¬μ©)
|
| 40 |
+
global_scheduler_state = SchedulerState()
|
| 41 |
+
|
| 42 |
+
# API ν€ κ΄λ¦¬λ₯Ό μν μΈμ
μν μ΄κΈ°ν
|
| 43 |
+
if 'openai_api_key' not in st.session_state:
|
| 44 |
+
st.session_state.openai_api_key = None
|
| 45 |
+
|
| 46 |
+
# νκ²½ λ³μμμ API ν€ λ‘λ μλ
|
| 47 |
+
load_dotenv()
|
| 48 |
+
if os.getenv('OPENAI_API_KEY'):
|
| 49 |
+
st.session_state.openai_api_key = os.getenv('OPENAI_API_KEY')
|
| 50 |
+
elif 'OPENAI_API_KEY' in st.secrets:
|
| 51 |
+
st.session_state.openai_api_key = st.secrets['OPENAI_API_KEY']
|
| 52 |
+
|
| 53 |
+
# νμν NLTK λ°μ΄ν° λ€μ΄λ‘λ
|
| 54 |
+
try:
|
| 55 |
+
nltk.data.find('tokenizers/punkt')
|
| 56 |
+
except LookupError:
|
| 57 |
+
nltk.download('punkt')
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
nltk.data.find('tokenizers/punkt_tab')
|
| 61 |
+
except LookupError:
|
| 62 |
+
nltk.download('punkt_tab')
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
nltk.data.find('corpora/stopwords')
|
| 66 |
+
except LookupError:
|
| 67 |
+
nltk.download('stopwords')
|
| 68 |
+
|
| 69 |
+
# OpenAI API ν€ μ€μ (μ€μ μ¬μ© μ νκ²½ λ³μλ Streamlit secretsμμ κ°μ Έμ€λ κ²μ΄ μ’μ΅λλ€)
|
| 70 |
+
if 'OPENAI_API_KEY' in os.environ:
|
| 71 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
| 72 |
+
elif 'OPENAI_API_KEY' in st.secrets:
|
| 73 |
+
openai.api_key = st.secrets['OPENAI_API_KEY']
|
| 74 |
+
elif os.getenv('OPENAI_API_KEY'):
|
| 75 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
| 76 |
+
|
| 77 |
+
# νμ΄μ§ μ€μ
|
| 78 |
+
st.set_page_config(page_title="λ΄μ€ κΈ°μ¬ λꡬ", page_icon="π°", layout="wide")
|
| 79 |
+
|
| 80 |
+
# μ¬μ΄λλ° λ©λ΄ μ€μ
|
| 81 |
+
st.sidebar.title("λ΄μ€ κΈ°μ¬ λꡬ")
|
| 82 |
+
menu = st.sidebar.radio(
|
| 83 |
+
"λ©λ΄ μ ν",
|
| 84 |
+
["λ΄μ€ κΈ°μ¬ ν¬λ‘€λ§", "κΈ°μ¬ λΆμνκΈ°", "μ κΈ°μ¬ μμ±νκΈ°", "λ΄μ€ κΈ°μ¬ μμ½νκΈ°"]
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# μ μ₯λ κΈ°μ¬λ₯Ό λΆλ¬μ€λ ν¨μ
|
| 88 |
+
def load_saved_articles():
|
| 89 |
+
if os.path.exists('saved_articles/articles.json'):
|
| 90 |
+
with open('saved_articles/articles.json', 'r', encoding='utf-8') as f:
|
| 91 |
+
return json.load(f)
|
| 92 |
+
return []
|
| 93 |
+
|
| 94 |
+
# κΈ°μ¬λ₯Ό μ μ₯νλ ν¨μ
|
| 95 |
+
def save_articles(articles):
|
| 96 |
+
os.makedirs('saved_articles', exist_ok=True)
|
| 97 |
+
with open('saved_articles/articles.json', 'w', encoding='utf-8') as f:
|
| 98 |
+
json.dump(articles, f, ensure_ascii=False, indent=2)
|
| 99 |
+
|
| 100 |
+
@st.cache_data
|
| 101 |
+
def crawl_naver_news(keyword, num_articles=5):
|
| 102 |
+
"""
|
| 103 |
+
λ€μ΄λ² λ΄μ€ κΈ°μ¬λ₯Ό μμ§νλ ν¨μ
|
| 104 |
+
"""
|
| 105 |
+
url = f"https://search.naver.com/search.naver?where=news&query={keyword}"
|
| 106 |
+
results = []
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
# νμ΄μ§ μμ²
|
| 110 |
+
response = requests.get(url)
|
| 111 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 112 |
+
|
| 113 |
+
# λ΄μ€ μμ΄ν
μ°ΎκΈ°
|
| 114 |
+
news_items = soup.select('div.sds-comps-base-layout.sds-comps-full-layout')
|
| 115 |
+
|
| 116 |
+
# κ° λ΄μ€ μμ΄ν
μμ μ 보 μΆμΆ
|
| 117 |
+
for i, item in enumerate(news_items):
|
| 118 |
+
if i >= num_articles:
|
| 119 |
+
break
|
| 120 |
+
|
| 121 |
+
try:
|
| 122 |
+
# μ λͺ©κ³Ό λ§ν¬ μΆμΆ
|
| 123 |
+
title_element = item.select_one('a.X0fMYp2dHd0TCUS2hjww span')
|
| 124 |
+
if not title_element:
|
| 125 |
+
continue
|
| 126 |
+
|
| 127 |
+
title = title_element.text.strip()
|
| 128 |
+
link_element = item.select_one('a.X0fMYp2dHd0TCUS2hjww')
|
| 129 |
+
link = link_element['href'] if link_element else ""
|
| 130 |
+
|
| 131 |
+
# μΈλ‘ μ¬ μΆμΆ
|
| 132 |
+
press_element = item.select_one('div.sds-comps-profile-info-title span.sds-comps-text-type-body2')
|
| 133 |
+
source = press_element.text.strip() if press_element else "μ μ μμ"
|
| 134 |
+
|
| 135 |
+
# λ μ§ μΆμΆ
|
| 136 |
+
date_element = item.select_one('span.r0VOr')
|
| 137 |
+
date = date_element.text.strip() if date_element else "μ μ μμ"
|
| 138 |
+
|
| 139 |
+
# 미리보기 λ΄μ© μΆμΆ
|
| 140 |
+
desc_element = item.select_one('a.X0fMYp2dHd0TCUS2hjww.IaKmSOGPdofdPwPE6cyU > span')
|
| 141 |
+
description = desc_element.text.strip() if desc_element else "λ΄μ© μμ"
|
| 142 |
+
|
| 143 |
+
results.append({
|
| 144 |
+
'title': title,
|
| 145 |
+
'link': link,
|
| 146 |
+
'description': description,
|
| 147 |
+
'source': source,
|
| 148 |
+
'date': date,
|
| 149 |
+
'content': "" # λμ€μ μλ¬Έ λ΄μ©μ μ μ₯ν νλ
|
| 150 |
+
})
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
st.error(f"κΈ°μ¬ μ 보 μΆμΆ μ€ μ€λ₯ λ°μ: {str(e)}")
|
| 154 |
+
continue
|
| 155 |
+
|
| 156 |
+
except Exception as e:
|
| 157 |
+
st.error(f"νμ΄μ§ μμ² μ€ μ€λ₯ λ°μ: {str(e)}")
|
| 158 |
+
|
| 159 |
+
return results
|
| 160 |
+
|
| 161 |
+
# κΈ°μ¬ μλ¬Έ κ°μ Έμ€κΈ°
|
| 162 |
+
def get_article_content(url):
|
| 163 |
+
try:
|
| 164 |
+
response = requests.get(url, timeout=5)
|
| 165 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 166 |
+
|
| 167 |
+
# λ€μ΄λ² λ΄μ€ λ³Έλ¬Έ μ°ΎκΈ°
|
| 168 |
+
content = soup.select_one('#dic_area')
|
| 169 |
+
if content:
|
| 170 |
+
text = content.text.strip()
|
| 171 |
+
text = re.sub(r'\s+', ' ', text) # μ¬λ¬ 곡백 μ κ±°
|
| 172 |
+
return text
|
| 173 |
+
|
| 174 |
+
# λ€λ₯Έ λ΄μ€ μ¬μ΄νΈ λ³Έλ¬Έ μ°ΎκΈ° (μ¬λ¬ μ¬μ΄νΈ λμ νμ)
|
| 175 |
+
content = soup.select_one('.article_body, .article-body, .article-content, .news-content-inner')
|
| 176 |
+
if content:
|
| 177 |
+
text = content.text.strip()
|
| 178 |
+
text = re.sub(r'\s+', ' ', text)
|
| 179 |
+
return text
|
| 180 |
+
|
| 181 |
+
return "λ³Έλ¬Έμ κ°μ Έμ¬ μ μμ΅λλ€."
|
| 182 |
+
except Exception as e:
|
| 183 |
+
return f"μ€λ₯ λ°μ: {str(e)}"
|
| 184 |
+
|
| 185 |
+
# NLTKλ₯Ό μ΄μ©ν ν€μλ λΆμ
|
| 186 |
+
def analyze_keywords(text, top_n=10):
|
| 187 |
+
# νκ΅μ΄ λΆμ©μ΄ λͺ©λ‘ (μ§μ μ μν΄μΌ ν©λλ€)
|
| 188 |
+
korean_stopwords = ['μ΄', 'κ·Έ', 'μ ', 'κ²', 'λ°', 'λ±', 'λ₯Ό', 'μ', 'μ', 'μμ', 'μ', 'μΌλ‘', 'λ‘']
|
| 189 |
+
|
| 190 |
+
tokens = word_tokenize(text)
|
| 191 |
+
tokens = [word for word in tokens if word.isalnum() and len(word) > 1 and word not in korean_stopwords]
|
| 192 |
+
|
| 193 |
+
word_count = Counter(tokens)
|
| 194 |
+
top_keywords = word_count.most_common(top_n)
|
| 195 |
+
|
| 196 |
+
return top_keywords
|
| 197 |
+
|
| 198 |
+
#μλ ν΄λΌμ°λμ© λΆμ
|
| 199 |
+
def extract_keywords_for_wordcloud(text, top_n=50):
|
| 200 |
+
if not text or len(text.strip()) < 10:
|
| 201 |
+
return {}
|
| 202 |
+
|
| 203 |
+
try:
|
| 204 |
+
try:
|
| 205 |
+
tokens = word_tokenize(text.lower())
|
| 206 |
+
except Exception as e:
|
| 207 |
+
st.warning(f"{str(e)} μ€λ₯λ°μ")
|
| 208 |
+
tokens = text.lower().split()
|
| 209 |
+
|
| 210 |
+
stop_words = set()
|
| 211 |
+
try:
|
| 212 |
+
stop_words = set(stopwords.words('english'))
|
| 213 |
+
except Exception:
|
| 214 |
+
pass
|
| 215 |
+
|
| 216 |
+
korea_stop_words = {
|
| 217 |
+
'λ°', 'λ±', 'λ₯Ό', 'μ΄', 'μ', 'κ°', 'μ', 'λ', 'μΌλ‘', 'μμ', 'κ·Έ', 'λ', 'λλ', 'νλ', 'ν ', 'νκ³ ',
|
| 218 |
+
'μλ€', 'μ΄λ€', 'μν΄', 'κ²μ΄λ€', 'κ²μ', 'λν', 'λλ¬Έ', 'κ·Έλ¦¬κ³ ', 'νμ§λ§', 'κ·Έλ¬λ', 'κ·Έλμ',
|
| 219 |
+
'μ
λλ€', 'ν©λλ€', 'μ΅λλ€', 'μ', 'μ£ ', 'κ³ ', 'κ³Ό', 'μ', 'λ', 'μ', 'μ', 'κ²', 'λ€', 'μ ', 'μ ',
|
| 220 |
+
'λ
', 'μ', 'μΌ', 'μ', 'λΆ', 'μ΄', 'μ§λ', 'μ¬ν΄', 'λ΄λ
', 'μ΅κ·Ό', 'νμ¬', 'μ€λ', 'λ΄μΌ', 'μ΄μ ',
|
| 221 |
+
'μ€μ ', 'μ€ν', 'λΆν°', 'κΉμ§', 'μκ²', 'κ»μ', 'μ΄λΌκ³ ', 'λΌκ³ ', 'νλ©°', 'νλ©΄μ', 'λ°λΌ', 'ν΅ν΄',
|
| 222 |
+
'κ΄λ ¨', 'ννΈ', 'νΉν', 'κ°μ₯', 'λ§€μ°', 'λ', 'λ', 'λ§μ΄', 'μ‘°κΈ', 'νμ', 'μμ£Ό', 'κ°λ', 'κ±°μ',
|
| 223 |
+
'μ ν', 'λ°λ‘', 'μ λ§', 'λ§μ½', 'λΉλ‘―ν', 'λ±μ', 'λ±μ΄', 'λ±μ', 'λ±κ³Ό', 'λ±λ', 'λ±μ', 'λ±μμ',
|
| 224 |
+
'κΈ°μ', 'λ΄μ€', 'μ¬μ§', 'μ°ν©λ΄μ€', 'λ΄μμ€', 'μ 곡', '무λ¨', 'μ μ¬', 'μ¬λ°°ν¬', 'κΈμ§', 'μ΅μ»€', 'λ©νΈ',
|
| 225 |
+
'μΌλ³΄', 'λ°μΌλ¦¬', 'κ²½μ ', 'μ¬ν', 'μ μΉ', 'μΈκ³', 'κ³Όν', 'μμ΄ν°', 'λ·μ»΄', 'μ¨λ·', 'λΈλ‘ν°', 'μ μμ λ¬Έ'
|
| 226 |
+
}
|
| 227 |
+
stop_words.update(korea_stop_words)
|
| 228 |
+
|
| 229 |
+
# 1κΈμ μ΄μμ΄κ³ λΆμ©μ΄κ° μλ ν ν°λ§ νν°λ§
|
| 230 |
+
filtered_tokens = [word for word in tokens if len(word) > 1 and word not in stop_words]
|
| 231 |
+
|
| 232 |
+
# λ¨μ΄ λΉλ κ³μ°
|
| 233 |
+
word_freq = {}
|
| 234 |
+
for word in filtered_tokens:
|
| 235 |
+
if word.isalnum(): # μνλ²³κ³Ό μ«μλ§ ν¬ν¨λ λ¨μ΄λ§ νμ©
|
| 236 |
+
word_freq[word] = word_freq.get(word, 0) + 1
|
| 237 |
+
|
| 238 |
+
# λΉλμμΌλ‘ μ λ ¬νμ¬ μμ nκ° λ°ν
|
| 239 |
+
sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
|
| 240 |
+
|
| 241 |
+
if not sorted_words:
|
| 242 |
+
return {"data": 1, "analysis": 1, "news": 1}
|
| 243 |
+
|
| 244 |
+
return dict(sorted_words[:top_n])
|
| 245 |
+
|
| 246 |
+
except Exception as e:
|
| 247 |
+
st.error(f"μ€λ₯λ°μ {str(e)}")
|
| 248 |
+
return {"data": 1, "analysis": 1, "news": 1}
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
# μλ ν΄λΌμ°λ μμ± ν¨μ
|
| 252 |
+
|
| 253 |
+
def generate_wordcloud(keywords_dict):
|
| 254 |
+
if not WordCloud:
|
| 255 |
+
st.warning("μλν΄λΌμ°λ μ€μΉμλμ΄ μμ΅λλ€.")
|
| 256 |
+
return None
|
| 257 |
+
try:
|
| 258 |
+
wc= WordCloud(
|
| 259 |
+
width=800,
|
| 260 |
+
height=400,
|
| 261 |
+
background_color = 'white',
|
| 262 |
+
colormap = 'viridis',
|
| 263 |
+
max_font_size=150,
|
| 264 |
+
random_state=42
|
| 265 |
+
).generate_from_frequencies(keywords_dict)
|
| 266 |
+
|
| 267 |
+
try:
|
| 268 |
+
possible_font_paths=["NanumGothic.ttf", "μ΄λ¦"]
|
| 269 |
+
|
| 270 |
+
font_path = None
|
| 271 |
+
for path in possible_font_paths:
|
| 272 |
+
if os.path.exists(path):
|
| 273 |
+
font_path = path
|
| 274 |
+
break
|
| 275 |
+
|
| 276 |
+
if font_path:
|
| 277 |
+
wc= WordCloud(
|
| 278 |
+
font_path=font_path,
|
| 279 |
+
width=800,
|
| 280 |
+
height=400,
|
| 281 |
+
background_color = 'white',
|
| 282 |
+
colormap = 'viridis',
|
| 283 |
+
max_font_size=150,
|
| 284 |
+
random_state=42
|
| 285 |
+
).generate_from_frequencies(keywords_dict)
|
| 286 |
+
except Exception as e:
|
| 287 |
+
print(f"μ€λ₯λ°μ {str(e)}")
|
| 288 |
+
|
| 289 |
+
return wc
|
| 290 |
+
|
| 291 |
+
except Exception as e:
|
| 292 |
+
st.error(f"μ€λ₯λ°μ {str(e)}")
|
| 293 |
+
return None
|
| 294 |
+
|
| 295 |
+
# λ΄μ€ λΆμ ν¨μ
|
| 296 |
+
def analyze_news_content(news_df):
|
| 297 |
+
if news_df.empty:
|
| 298 |
+
return "λ°μ΄ν°κ° μμ΅λλ€"
|
| 299 |
+
|
| 300 |
+
results = {}
|
| 301 |
+
#μΉ΄ν
κ³ λ¦¬λ³
|
| 302 |
+
if 'source' in news_df.columns:
|
| 303 |
+
results['source_counts'] = news_df['source'].value_counts().to_dict()
|
| 304 |
+
#μΉ΄ν
κ³ λ¦¬λ³
|
| 305 |
+
if 'date' in news_df.columns:
|
| 306 |
+
results['date_counts'] = news_df['date'].value_counts().to_dict()
|
| 307 |
+
|
| 308 |
+
#ν€μλλΆμ
|
| 309 |
+
all_text = " ".join(news_df['title'].fillna('') + " " + news_df['content'].fillna(''))
|
| 310 |
+
|
| 311 |
+
if len(all_text.strip()) > 0:
|
| 312 |
+
results['top_keywords_for_wordcloud']= extract_keywords_for_wordcloud(all_text, top_n=50)
|
| 313 |
+
results['top_keywords'] = analyze_keywords(all_text)
|
| 314 |
+
else:
|
| 315 |
+
results['top_keywords_for_wordcloud']={}
|
| 316 |
+
results['top_keywords'] = []
|
| 317 |
+
return results
|
| 318 |
+
|
| 319 |
+
# OpenAI APIλ₯Ό μ΄μ©ν μ κΈ°μ¬ μμ±
|
| 320 |
+
def generate_article(original_content, prompt_text):
|
| 321 |
+
try:
|
| 322 |
+
response = openai.chat.completions.create(
|
| 323 |
+
model="gpt-4.1-mini",
|
| 324 |
+
messages=[
|
| 325 |
+
{"role": "system", "content": "λΉμ μ μ λ¬Έμ μΈ λ΄μ€ κΈ°μμ
λλ€. μ£Όμ΄μ§ λ΄μ©μ λ°νμΌλ‘ μλ‘μ΄ κΈ°μ¬λ₯Ό μμ±ν΄μ£ΌμΈμ."},
|
| 326 |
+
{"role": "user", "content": f"λ€μ λ΄μ©μ λ°νμΌλ‘ {prompt_text}\n\n{original_content[:1000]}"}
|
| 327 |
+
],
|
| 328 |
+
max_tokens=2000
|
| 329 |
+
)
|
| 330 |
+
return response.choices[0].message.content
|
| 331 |
+
except Exception as e:
|
| 332 |
+
return f"κΈ°μ¬ μμ± μ€λ₯: {str(e)}"
|
| 333 |
+
|
| 334 |
+
# OpenAI APIλ₯Ό μ΄μ©ν μ΄λ―Έμ§ μμ±
|
| 335 |
+
def generate_image(prompt):
|
| 336 |
+
try:
|
| 337 |
+
response = openai.images.generate(
|
| 338 |
+
model="gpt-image-1",
|
| 339 |
+
prompt=prompt
|
| 340 |
+
)
|
| 341 |
+
image_base64=response.data[0].b64_json
|
| 342 |
+
return f"data:image/png;base64,{image_base64}"
|
| 343 |
+
except Exception as e:
|
| 344 |
+
return f"μ΄λ―Έμ§ μμ± μ€λ₯: {str(e)}"
|
| 345 |
+
|
| 346 |
+
# μ€μΌμ€λ¬ κ΄λ ¨ ν¨μλ€
|
| 347 |
+
def get_next_run_time(hour, minute):
|
| 348 |
+
now = datetime.now()
|
| 349 |
+
next_run = now.replace(hour=hour, minute=minute, second=0, microsecond=0)
|
| 350 |
+
if next_run <= now:
|
| 351 |
+
next_run += timedelta(days=1)
|
| 352 |
+
return next_run
|
| 353 |
+
|
| 354 |
+
def run_scheduled_task():
|
| 355 |
+
try:
|
| 356 |
+
while global_scheduler_state.is_running:
|
| 357 |
+
schedule.run_pending()
|
| 358 |
+
time.sleep(1)
|
| 359 |
+
except Exception as e:
|
| 360 |
+
print(f"μ€μΌμ€λ¬ μλ¬ λ°μ: {e}")
|
| 361 |
+
traceback.print_exc()
|
| 362 |
+
|
| 363 |
+
def perform_news_task(task_type, keyword, num_articles, file_prefix):
|
| 364 |
+
try:
|
| 365 |
+
articles = crawl_naver_news(keyword, num_articles)
|
| 366 |
+
|
| 367 |
+
# κΈ°μ¬ λ΄μ© κ°μ Έμ€κΈ°
|
| 368 |
+
for article in articles:
|
| 369 |
+
article['content'] = get_article_content(article['link'])
|
| 370 |
+
time.sleep(0.5) # μλ² λΆν λ°©μ§
|
| 371 |
+
|
| 372 |
+
# κ²°κ³Ό μ μ₯
|
| 373 |
+
os.makedirs('scheduled_news', exist_ok=True)
|
| 374 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 375 |
+
filename = f"scheduled_news/{file_prefix}_{task_type}_{timestamp}.json"
|
| 376 |
+
|
| 377 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
| 378 |
+
json.dump(articles, f, ensure_ascii=False, indent=2)
|
| 379 |
+
|
| 380 |
+
global_scheduler_state.last_run = datetime.now()
|
| 381 |
+
print(f"{datetime.now()} - {task_type} λ΄μ€ κΈ°μ¬ μμ§ μλ£: {keyword}")
|
| 382 |
+
|
| 383 |
+
# μ μ μνμ μμ§ κ²°κ³Όλ₯Ό μ μ₯ (UI μ
λ°μ΄νΈμ©)
|
| 384 |
+
result_item = {
|
| 385 |
+
'task_type': task_type,
|
| 386 |
+
'keyword': keyword,
|
| 387 |
+
'timestamp': timestamp,
|
| 388 |
+
'num_articles': len(articles),
|
| 389 |
+
'filename': filename
|
| 390 |
+
}
|
| 391 |
+
global_scheduler_state.scheduled_results.append(result_item)
|
| 392 |
+
|
| 393 |
+
except Exception as e:
|
| 394 |
+
print(f"μμ
μ€ν μ€ μ€λ₯ λ°μ: {e}")
|
| 395 |
+
traceback.print_exc()
|
| 396 |
+
|
| 397 |
+
def start_scheduler(daily_tasks, interval_tasks):
|
| 398 |
+
if not global_scheduler_state.is_running:
|
| 399 |
+
schedule.clear()
|
| 400 |
+
global_scheduler_state.scheduled_jobs = []
|
| 401 |
+
|
| 402 |
+
# μΌλ³ νμ€ν¬ λ±λ‘
|
| 403 |
+
for task in daily_tasks:
|
| 404 |
+
hour = task['hour']
|
| 405 |
+
minute = task['minute']
|
| 406 |
+
keyword = task['keyword']
|
| 407 |
+
num_articles = task['num_articles']
|
| 408 |
+
|
| 409 |
+
job_id = f"daily_{keyword}_{hour}_{minute}"
|
| 410 |
+
schedule.every().day.at(f"{hour:02d}:{minute:02d}").do(
|
| 411 |
+
perform_news_task, "daily", keyword, num_articles, job_id
|
| 412 |
+
).tag(job_id)
|
| 413 |
+
|
| 414 |
+
global_scheduler_state.scheduled_jobs.append({
|
| 415 |
+
'id': job_id,
|
| 416 |
+
'type': 'daily',
|
| 417 |
+
'time': f"{hour:02d}:{minute:02d}",
|
| 418 |
+
'keyword': keyword,
|
| 419 |
+
'num_articles': num_articles
|
| 420 |
+
})
|
| 421 |
+
|
| 422 |
+
# μκ° κ°κ²© νμ€ν¬ λ±λ‘
|
| 423 |
+
for task in interval_tasks:
|
| 424 |
+
interval_minutes = task['interval_minutes']
|
| 425 |
+
keyword = task['keyword']
|
| 426 |
+
num_articles = task['num_articles']
|
| 427 |
+
run_immediately = task['run_immediately']
|
| 428 |
+
|
| 429 |
+
job_id = f"interval_{keyword}_{interval_minutes}"
|
| 430 |
+
|
| 431 |
+
if run_immediately:
|
| 432 |
+
# μ¦μ μ€ν
|
| 433 |
+
perform_news_task("interval", keyword, num_articles, job_id)
|
| 434 |
+
|
| 435 |
+
# λΆ κ°κ²©μΌλ‘ μμ½
|
| 436 |
+
schedule.every(interval_minutes).minutes.do(
|
| 437 |
+
perform_news_task, "interval", keyword, num_articles, job_id
|
| 438 |
+
).tag(job_id)
|
| 439 |
+
|
| 440 |
+
global_scheduler_state.scheduled_jobs.append({
|
| 441 |
+
'id': job_id,
|
| 442 |
+
'type': 'interval',
|
| 443 |
+
'interval': f"{interval_minutes}λΆλ§λ€",
|
| 444 |
+
'keyword': keyword,
|
| 445 |
+
'num_articles': num_articles,
|
| 446 |
+
'run_immediately': run_immediately
|
| 447 |
+
})
|
| 448 |
+
|
| 449 |
+
# λ€μ μ€ν μκ° κ³μ°
|
| 450 |
+
next_run = schedule.next_run()
|
| 451 |
+
if next_run:
|
| 452 |
+
global_scheduler_state.next_run = next_run
|
| 453 |
+
|
| 454 |
+
# μ€μΌμ€λ¬ μ°λ λ μμ
|
| 455 |
+
global_scheduler_state.is_running = True
|
| 456 |
+
global_scheduler_state.thread = threading.Thread(
|
| 457 |
+
target=run_scheduled_task, daemon=True
|
| 458 |
+
)
|
| 459 |
+
global_scheduler_state.thread.start()
|
| 460 |
+
|
| 461 |
+
# μνλ₯Ό μΈμ
μνλ‘λ λ³΅μ¬ (UI νμμ©)
|
| 462 |
+
if 'scheduler_status' not in st.session_state:
|
| 463 |
+
st.session_state.scheduler_status = {}
|
| 464 |
+
|
| 465 |
+
st.session_state.scheduler_status = {
|
| 466 |
+
'is_running': global_scheduler_state.is_running,
|
| 467 |
+
'last_run': global_scheduler_state.last_run,
|
| 468 |
+
'next_run': global_scheduler_state.next_run,
|
| 469 |
+
'jobs_count': len(global_scheduler_state.scheduled_jobs)
|
| 470 |
+
}
|
| 471 |
+
|
| 472 |
+
def stop_scheduler():
|
| 473 |
+
if global_scheduler_state.is_running:
|
| 474 |
+
global_scheduler_state.is_running = False
|
| 475 |
+
schedule.clear()
|
| 476 |
+
if global_scheduler_state.thread:
|
| 477 |
+
global_scheduler_state.thread.join(timeout=1)
|
| 478 |
+
global_scheduler_state.next_run = None
|
| 479 |
+
global_scheduler_state.scheduled_jobs = []
|
| 480 |
+
|
| 481 |
+
# UI μν μ
λ°μ΄νΈ
|
| 482 |
+
if 'scheduler_status' in st.session_state:
|
| 483 |
+
st.session_state.scheduler_status['is_running'] = False
|
| 484 |
+
|
| 485 |
+
# λ©λ΄μ λ°λ₯Έ νλ©΄ νμ
|
| 486 |
+
if menu == "λ΄μ€ κΈ°μ¬ ν¬λ‘€λ§":
|
| 487 |
+
st.header("λ΄μ€ κΈ°μ¬ ν¬λ‘€λ§")
|
| 488 |
+
|
| 489 |
+
keyword = st.text_input("κ²μμ΄ μ
λ ₯", "μΈκ³΅μ§λ₯")
|
| 490 |
+
num_articles = st.slider("κ°μ Έμ¬ κΈ°μ¬ μ", min_value=1, max_value=20, value=5)
|
| 491 |
+
|
| 492 |
+
if st.button("κΈ°μ¬ κ°μ Έμ€κΈ°"):
|
| 493 |
+
with st.spinner("κΈ°μ¬λ₯Ό μμ§ μ€μ
λλ€..."):
|
| 494 |
+
articles = crawl_naver_news(keyword, num_articles)
|
| 495 |
+
|
| 496 |
+
# κΈ°μ¬ λ΄μ© κ°μ Έμ€κΈ°
|
| 497 |
+
for i, article in enumerate(articles):
|
| 498 |
+
st.progress((i + 1) / len(articles))
|
| 499 |
+
article['content'] = get_article_content(article['link'])
|
| 500 |
+
time.sleep(0.5) # μλ² λΆν λ°©μ§
|
| 501 |
+
|
| 502 |
+
# κ²°κ³Ό μ μ₯ λ° νμ
|
| 503 |
+
save_articles(articles)
|
| 504 |
+
st.success(f"{len(articles)}κ°μ κΈ°μ¬λ₯Ό μμ§νμ΅λλ€!")
|
| 505 |
+
|
| 506 |
+
# μμ§ν κΈ°μ¬ νμ
|
| 507 |
+
for article in articles:
|
| 508 |
+
with st.expander(f"{article['title']} - {article['source']}"):
|
| 509 |
+
st.write(f"**μΆμ²:** {article['source']}")
|
| 510 |
+
st.write(f"**λ μ§:** {article['date']}")
|
| 511 |
+
st.write(f"**μμ½:** {article['description']}")
|
| 512 |
+
st.write(f"**λ§ν¬:** {article['link']}")
|
| 513 |
+
st.write("**본문 미리보기:**")
|
| 514 |
+
st.write(article['content'][:300] + "...")
|
| 515 |
+
|
| 516 |
+
elif menu == "κΈ°μ¬ λΆμνκΈ°":
|
| 517 |
+
st.header("κΈ°μ¬ λΆμνκΈ°")
|
| 518 |
+
|
| 519 |
+
articles = load_saved_articles()
|
| 520 |
+
if not articles:
|
| 521 |
+
st.warning("μ μ₯λ κΈ°μ¬κ° μμ΅λλ€. λ¨Όμ 'λ΄μ€ κΈ°μ¬ ν¬λ‘€λ§' λ©λ΄μμ κΈ°μ¬λ₯Ό μμ§ν΄μ£ΌμΈμ.")
|
| 522 |
+
else:
|
| 523 |
+
# κΈ°μ¬ μ ν
|
| 524 |
+
titles = [article['title'] for article in articles]
|
| 525 |
+
selected_title = st.selectbox("λΆμν κΈ°μ¬ μ ν", titles)
|
| 526 |
+
|
| 527 |
+
selected_article = next((a for a in articles if a['title'] == selected_title), None)
|
| 528 |
+
|
| 529 |
+
if selected_article:
|
| 530 |
+
st.write(f"**μ λͺ©:** {selected_article['title']}")
|
| 531 |
+
st.write(f"**μΆμ²:** {selected_article['source']}")
|
| 532 |
+
|
| 533 |
+
# λ³Έλ¬Έ νμ
|
| 534 |
+
with st.expander("κΈ°μ¬ λ³Έλ¬Έ 보기"):
|
| 535 |
+
st.write(selected_article['content'])
|
| 536 |
+
|
| 537 |
+
# λΆμ λ°©λ² μ ν
|
| 538 |
+
analysis_type = st.radio(
|
| 539 |
+
"λΆμ λ°©λ²",
|
| 540 |
+
["ν€μλ λΆμ", "κ°μ λΆμ", "ν
μ€νΈ ν΅κ³"]
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
if analysis_type == "ν€μλ λΆμ":
|
| 544 |
+
if st.button("ν€μλ λΆμνκΈ°"):
|
| 545 |
+
with st.spinner("ν€μλλ₯Ό λΆμ μ€μ
λλ€..."):
|
| 546 |
+
keyword_tab1, keyword_tab2 = st.tabs(["ν€μλ λΉλ", "μλν΄λΌμ°λ"])
|
| 547 |
+
|
| 548 |
+
with keyword_tab1:
|
| 549 |
+
|
| 550 |
+
keywords = analyze_keywords(selected_article['content'])
|
| 551 |
+
|
| 552 |
+
# μκ°ν
|
| 553 |
+
df = pd.DataFrame(keywords, columns=['λ¨μ΄', 'λΉλμ'])
|
| 554 |
+
st.bar_chart(df.set_index('λ¨μ΄'))
|
| 555 |
+
|
| 556 |
+
st.write("**μ£Όμ ν€μλ:**")
|
| 557 |
+
for word, count in keywords:
|
| 558 |
+
st.write(f"- {word}: {count}ν")
|
| 559 |
+
with keyword_tab2:
|
| 560 |
+
keyword_dict = extract_keywords_for_wordcloud(selected_article['content'])
|
| 561 |
+
wc = generate_wordcloud(keyword_dict)
|
| 562 |
+
|
| 563 |
+
if wc:
|
| 564 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 565 |
+
ax.imshow(wc, interpolation='bilinear')
|
| 566 |
+
ax.axis('off')
|
| 567 |
+
st.pyplot(fig)
|
| 568 |
+
|
| 569 |
+
# ν€μλ μμ 20κ° νμ
|
| 570 |
+
st.write("**μμ 20κ° ν€μλ:**")
|
| 571 |
+
top_keywords = sorted(keyword_dict.items(), key=lambda x: x[1], reverse=True)[:20]
|
| 572 |
+
keyword_df = pd.DataFrame(top_keywords, columns=['ν€μλ', 'λΉλ'])
|
| 573 |
+
st.dataframe(keyword_df)
|
| 574 |
+
else:
|
| 575 |
+
st.error("μλν΄λΌμ°λλ₯Ό μμ±ν μ μμ΅λλ€.")
|
| 576 |
+
|
| 577 |
+
elif analysis_type == "ν
μ€νΈ ν΅κ³":
|
| 578 |
+
if st.button("ν
μ€νΈ ν΅κ³ λΆμ"):
|
| 579 |
+
content = selected_article['content']
|
| 580 |
+
|
| 581 |
+
# ν
μ€νΈ ν΅κ³ κ³μ°
|
| 582 |
+
word_count = len(re.findall(r'\b\w+\b', content))
|
| 583 |
+
char_count = len(content)
|
| 584 |
+
sentence_count = len(re.split(r'[.!?]+', content))
|
| 585 |
+
avg_word_length = sum(len(word) for word in re.findall(r'\b\w+\b', content)) / word_count if word_count > 0 else 0
|
| 586 |
+
avg_sentence_length = word_count / sentence_count if sentence_count > 0 else 0
|
| 587 |
+
|
| 588 |
+
# ν΅κ³ νμ
|
| 589 |
+
st.subheader("ν
μ€νΈ ν΅κ³")
|
| 590 |
+
col1, col2, col3 = st.columns(3)
|
| 591 |
+
with col1:
|
| 592 |
+
st.metric("λ¨μ΄ μ", f"{word_count:,}")
|
| 593 |
+
with col2:
|
| 594 |
+
st.metric("λ¬Έμ μ", f"{char_count:,}")
|
| 595 |
+
with col3:
|
| 596 |
+
st.metric("λ¬Έμ₯ μ", f"{sentence_count:,}")
|
| 597 |
+
|
| 598 |
+
col1, col2 = st.columns(2)
|
| 599 |
+
with col1:
|
| 600 |
+
st.metric("νκ· λ¨μ΄ κΈΈμ΄", f"{avg_word_length:.1f}μ")
|
| 601 |
+
with col2:
|
| 602 |
+
st.metric("νκ· λ¬Έμ₯ κΈΈμ΄", f"{avg_sentence_length:.1f}λ¨μ΄")
|
| 603 |
+
|
| 604 |
+
# ν
μ€νΈ 볡μ‘μ± μ μ (κ°λ¨ν μμ)
|
| 605 |
+
complexity_score = min(10, (avg_sentence_length / 10) * 5 + (avg_word_length / 5) * 5)
|
| 606 |
+
st.progress(complexity_score / 10)
|
| 607 |
+
st.write(f"ν
μ€νΈ 볡μ‘μ± μ μ: {complexity_score:.1f}/10")
|
| 608 |
+
|
| 609 |
+
# μΆν λΉλ λ§λ κ·Έλν
|
| 610 |
+
st.subheader("νμ¬λ³ λΆν¬ (νκ΅μ΄/μμ΄ μ§μ)")
|
| 611 |
+
try:
|
| 612 |
+
# KoNLPy μ€μΉ νμΈ
|
| 613 |
+
try:
|
| 614 |
+
from konlpy.tag import Okt
|
| 615 |
+
konlpy_installed = True
|
| 616 |
+
except ImportError:
|
| 617 |
+
konlpy_installed = False
|
| 618 |
+
st.warning("νκ΅μ΄ ννμ λΆμμ μν΄ KoNLPyλ₯Ό μ€μΉν΄μ£ΌμΈμ: pip install konlpy")
|
| 619 |
+
|
| 620 |
+
# μμ΄ POS tagger μ€λΉ
|
| 621 |
+
from nltk import pos_tag
|
| 622 |
+
try:
|
| 623 |
+
nltk.data.find('taggers/averaged_perceptron_tagger')
|
| 624 |
+
except LookupError:
|
| 625 |
+
nltk.download('averaged_perceptron_tagger')
|
| 626 |
+
|
| 627 |
+
# Try using the correct resource name as shown in the error message
|
| 628 |
+
try:
|
| 629 |
+
nltk.data.find('averaged_perceptron_tagger_eng')
|
| 630 |
+
except LookupError:
|
| 631 |
+
nltk.download('averaged_perceptron_tagger_eng')
|
| 632 |
+
|
| 633 |
+
# μΈμ΄ κ°μ§ (κ°λ¨ν λ°©μ)
|
| 634 |
+
is_korean = bool(re.search(r'[κ°-ν£]', content))
|
| 635 |
+
|
| 636 |
+
if is_korean and konlpy_installed:
|
| 637 |
+
# νκ΅μ΄ ννμ λΆμ
|
| 638 |
+
okt = Okt()
|
| 639 |
+
tagged = okt.pos(content)
|
| 640 |
+
|
| 641 |
+
# νκ΅μ΄ νμ¬ λ§€ν
|
| 642 |
+
pos_dict = {
|
| 643 |
+
'Noun': 'λͺ
μ¬', 'NNG': 'λͺ
μ¬', 'NNP': 'κ³ μ λͺ
μ¬',
|
| 644 |
+
'Verb': 'λμ¬', 'VV': 'λμ¬', 'VA': 'νμ©μ¬',
|
| 645 |
+
'Adjective': 'νμ©μ¬',
|
| 646 |
+
'Adverb': 'λΆμ¬',
|
| 647 |
+
'Josa': 'μ‘°μ¬', 'Punctuation': 'ꡬλμ ',
|
| 648 |
+
'Determiner': 'κ΄νμ¬', 'Exclamation': 'κ°νμ¬'
|
| 649 |
+
}
|
| 650 |
+
|
| 651 |
+
pos_counts = {'λͺ
μ¬': 0, 'λμ¬': 0, 'νμ©μ¬': 0, 'λΆμ¬': 0, 'μ‘°μ¬': 0, 'ꡬλμ ': 0, 'κ΄νμ¬': 0, 'κ°νμ¬': 0, 'κΈ°ν': 0}
|
| 652 |
+
|
| 653 |
+
for _, pos in tagged:
|
| 654 |
+
if pos in pos_dict:
|
| 655 |
+
pos_counts[pos_dict[pos]] += 1
|
| 656 |
+
elif pos.startswith('N'): # κΈ°ν λͺ
μ¬λ₯
|
| 657 |
+
pos_counts['λͺ
μ¬'] += 1
|
| 658 |
+
elif pos.startswith('V'): # κΈ°ν λμ¬λ₯
|
| 659 |
+
pos_counts['λμ¬'] += 1
|
| 660 |
+
else:
|
| 661 |
+
pos_counts['κΈ°ν'] += 1
|
| 662 |
+
|
| 663 |
+
else:
|
| 664 |
+
# μμ΄ POS νκΉ
|
| 665 |
+
tokens = word_tokenize(content.lower())
|
| 666 |
+
tagged = pos_tag(tokens)
|
| 667 |
+
|
| 668 |
+
# μμ΄ νμ¬ λ§€ν
|
| 669 |
+
pos_dict = {
|
| 670 |
+
'NN': 'λͺ
μ¬', 'NNS': 'λͺ
μ¬', 'NNP': 'κ³ μ λͺ
μ¬', 'NNPS': 'κ³ μ λͺ
μ¬',
|
| 671 |
+
'VB': 'λμ¬', 'VBD': 'λμ¬', 'VBG': 'λμ¬', 'VBN': 'λμ¬', 'VBP': 'λμ¬', 'VBZ': 'λμ¬',
|
| 672 |
+
'JJ': 'νμ©μ¬', 'JJR': 'νμ©μ¬', 'JJS': 'νμ©μ¬',
|
| 673 |
+
'RB': 'λΆμ¬', 'RBR': 'λΆμ¬', 'RBS': 'λΆμ¬'
|
| 674 |
+
}
|
| 675 |
+
|
| 676 |
+
pos_counts = {'λͺ
μ¬': 0, 'λμ¬': 0, 'νμ©μ¬': 0, 'λΆμ¬': 0, 'κΈ°ν': 0}
|
| 677 |
+
|
| 678 |
+
for _, pos in tagged:
|
| 679 |
+
if pos in pos_dict:
|
| 680 |
+
pos_counts[pos_dict[pos]] += 1
|
| 681 |
+
else:
|
| 682 |
+
pos_counts['κΈ°ν'] += 1
|
| 683 |
+
|
| 684 |
+
# κ²°κ³Ό μκ°ν
|
| 685 |
+
pos_df = pd.DataFrame({
|
| 686 |
+
'νμ¬': list(pos_counts.keys()),
|
| 687 |
+
'λΉλ': list(pos_counts.values())
|
| 688 |
+
})
|
| 689 |
+
|
| 690 |
+
st.bar_chart(pos_df.set_index('νμ¬'))
|
| 691 |
+
|
| 692 |
+
if is_korean:
|
| 693 |
+
st.info("νκ΅μ΄ ν
μ€νΈκ° κ°μ§λμμ΅λλ€.")
|
| 694 |
+
else:
|
| 695 |
+
st.info("μμ΄ ν
μ€νΈκ° κ°μ§λμμ΅λλ€.")
|
| 696 |
+
except Exception as e:
|
| 697 |
+
st.error(f"νμ¬ λΆμ μ€ μ€λ₯ λ°μ: {str(e)}")
|
| 698 |
+
st.error(traceback.format_exc())
|
| 699 |
+
|
| 700 |
+
elif analysis_type == "κ°μ λΆμ":
|
| 701 |
+
if st.button("κ°μ λΆμνκΈ°"):
|
| 702 |
+
if st.session_state.openai_api_key:
|
| 703 |
+
with st.spinner("κΈ°μ¬μ κ°μ μ λΆμ μ€μ
λλ€..."):
|
| 704 |
+
try:
|
| 705 |
+
openai.api_key = st.session_state.openai_api_key
|
| 706 |
+
|
| 707 |
+
# κ°μ λΆμ ν둬ννΈ μ€μ
|
| 708 |
+
response = openai.chat.completions.create(
|
| 709 |
+
model="gpt-4.1-mini",
|
| 710 |
+
messages=[
|
| 711 |
+
{"role": "system", "content": "λΉμ μ ν
μ€νΈμ κ°μ κ³Ό λ
Όμ‘°λ₯Ό λΆμνλ μ λ¬Έκ°μ
λλ€. λ€μ λ΄μ€ κΈ°μ¬μ κ°μ κ³Ό λ
Όμ‘°λ₯Ό λΆμνκ³ , 'κΈμ μ ', 'λΆμ μ ', 'μ€λ¦½μ ' μ€ νλλ‘ λΆλ₯ν΄ μ£ΌμΈμ. λν κΈ°μ¬μμ λλ¬λλ ν΅μ¬ κ°μ ν€μλλ₯Ό 5κ° μΆμΆνκ³ , κ° ν€μλλ³λ‘ 1-10 μ¬μ΄μ κ°λ μ μλ₯Ό 맀겨주μΈμ. JSON νμμΌλ‘ λ€μκ³Ό κ°μ΄ μλ΅ν΄μ£ΌμΈμ: {'sentiment': 'κΈμ μ /λΆμ μ /μ€λ¦½μ ', 'reason': 'μ΄μ μ€λͺ
...', 'keywords': [{'word': 'ν€μλ1', 'score': 8}, {'word': 'ν€μλ2', 'score': 7}, ...]}"},
|
| 712 |
+
{"role": "user", "content": f"λ€μ λ΄μ€ κΈ°μ¬λ₯Ό λΆμν΄ μ£ΌμΈμ:\n\nμ λͺ©: {selected_article['title']}\n\nλ΄μ©: {selected_article['content'][:1500]}"}
|
| 713 |
+
],
|
| 714 |
+
max_tokens=800,
|
| 715 |
+
response_format={"type": "json_object"}
|
| 716 |
+
)
|
| 717 |
+
|
| 718 |
+
# JSON νμ±
|
| 719 |
+
analysis_result = json.loads(response.choices[0].message.content)
|
| 720 |
+
|
| 721 |
+
# κ²°κ³Ό μκ°ν
|
| 722 |
+
st.subheader("κ°μ λΆμ κ²°κ³Ό")
|
| 723 |
+
|
| 724 |
+
# 1. κ°μ νμ
μ λ°λ₯Έ μκ°μ νν
|
| 725 |
+
sentiment_type = analysis_result.get('sentiment', 'μ€λ¦½μ ')
|
| 726 |
+
col1, col2, col3 = st.columns([1, 3, 1])
|
| 727 |
+
|
| 728 |
+
with col2:
|
| 729 |
+
if sentiment_type == "κΈμ μ ":
|
| 730 |
+
st.markdown(f"""
|
| 731 |
+
<div style="background-color:#DCEDC8; padding:20px; border-radius:10px; text-align:center;">
|
| 732 |
+
<h1 style="color:#388E3C; font-size:28px;">π κΈμ μ λ
Όμ‘° π</h1>
|
| 733 |
+
<p style="font-size:16px;">κ°μ κ°λ: λμ</p>
|
| 734 |
+
</div>
|
| 735 |
+
""", unsafe_allow_html=True)
|
| 736 |
+
elif sentiment_type == "λΆμ μ ":
|
| 737 |
+
st.markdown(f"""
|
| 738 |
+
<div style="background-color:#FFCDD2; padding:20px; border-radius:10px; text-align:center;">
|
| 739 |
+
<h1 style="color:#D32F2F; font-size:28px;">π λΆμ μ λ
Όμ‘° π</h1>
|
| 740 |
+
<p style="font-size:16px;">κ°μ κ°λ: λμ</p>
|
| 741 |
+
</div>
|
| 742 |
+
""", unsafe_allow_html=True)
|
| 743 |
+
else:
|
| 744 |
+
st.markdown(f"""
|
| 745 |
+
<div style="background-color:#E0E0E0; padding:20px; border-radius:10px; text-align:center;">
|
| 746 |
+
<h1 style="color:#616161; font-size:28px;">π μ€λ¦½μ λ
Όμ‘° π</h1>
|
| 747 |
+
<p style="font-size:16px;">κ°μ κ°λ: μ€κ°</p>
|
| 748 |
+
</div>
|
| 749 |
+
""", unsafe_allow_html=True)
|
| 750 |
+
|
| 751 |
+
# 2. μ΄μ μ€λͺ
|
| 752 |
+
st.markdown("### λΆμ κ·Όκ±°")
|
| 753 |
+
st.markdown(f"<div style='background-color:#F5F5F5; padding:15px; border-radius:5px;'>{analysis_result.get('reason', '')}</div>", unsafe_allow_html=True)
|
| 754 |
+
|
| 755 |
+
# 3. κ°μ ν€μλ μκ°ν
|
| 756 |
+
st.markdown("### ν΅μ¬ κ°μ ν€μλ")
|
| 757 |
+
|
| 758 |
+
# ν€μλ λ°μ΄ν° μ€λΉ
|
| 759 |
+
keywords = analysis_result.get('keywords', [])
|
| 760 |
+
if keywords:
|
| 761 |
+
# λ§λ μ°¨νΈμ© λ°μ΄ν°
|
| 762 |
+
keyword_names = [item.get('word', '') for item in keywords]
|
| 763 |
+
keyword_scores = [item.get('score', 0) for item in keywords]
|
| 764 |
+
|
| 765 |
+
# λ μ΄λ μ°¨νΈ μμ±
|
| 766 |
+
fig = go.Figure()
|
| 767 |
+
|
| 768 |
+
# μμ μ€μ
|
| 769 |
+
if sentiment_type == "κΈμ μ ":
|
| 770 |
+
fill_color = 'rgba(76, 175, 80, 0.3)' # μ°ν μ΄λ‘μ
|
| 771 |
+
line_color = 'rgba(76, 175, 80, 1)' # μ§ν μ΄λ‘μ
|
| 772 |
+
elif sentiment_type == "λΆμ μ ":
|
| 773 |
+
fill_color = 'rgba(244, 67, 54, 0.3)' # μ°ν λΉ¨κ°μ
|
| 774 |
+
line_color = 'rgba(244, 67, 54, 1)' # μ§ν λΉ¨κ°μ
|
| 775 |
+
else:
|
| 776 |
+
fill_color = 'rgba(158, 158, 158, 0.3)' # μ°ν νμ
|
| 777 |
+
line_color = 'rgba(158, 158, 158, 1)' # μ§ν νμ
|
| 778 |
+
|
| 779 |
+
# λ μ΄λ μ°¨νΈ λ°μ΄ν° μ€λΉ - λ§μ§λ§ μ μ΄ μ²« μ κ³Ό μ°κ²°λλλ‘ λ°μ΄ν° μΆκ°
|
| 780 |
+
radar_keywords = keyword_names.copy()
|
| 781 |
+
radar_scores = keyword_scores.copy()
|
| 782 |
+
|
| 783 |
+
# λ μ΄λ μ°¨νΈ μμ±
|
| 784 |
+
fig.add_trace(go.Scatterpolar(
|
| 785 |
+
r=radar_scores,
|
| 786 |
+
theta=radar_keywords,
|
| 787 |
+
fill='toself',
|
| 788 |
+
fillcolor=fill_color,
|
| 789 |
+
line=dict(color=line_color, width=2),
|
| 790 |
+
name='κ°μ ν€μλ'
|
| 791 |
+
))
|
| 792 |
+
|
| 793 |
+
# λ μ΄λ μ°¨νΈ λ μ΄μμ μ€μ
|
| 794 |
+
fig.update_layout(
|
| 795 |
+
polar=dict(
|
| 796 |
+
radialaxis=dict(
|
| 797 |
+
visible=True,
|
| 798 |
+
range=[0, 10],
|
| 799 |
+
tickmode='linear',
|
| 800 |
+
tick0=0,
|
| 801 |
+
dtick=2
|
| 802 |
+
)
|
| 803 |
+
),
|
| 804 |
+
showlegend=False,
|
| 805 |
+
title={
|
| 806 |
+
'text': 'κ°μ ν€μλ λ μ΄λ λΆμ',
|
| 807 |
+
'y':0.95,
|
| 808 |
+
'x':0.5,
|
| 809 |
+
'xanchor': 'center',
|
| 810 |
+
'yanchor': 'top'
|
| 811 |
+
},
|
| 812 |
+
height=500,
|
| 813 |
+
width=500,
|
| 814 |
+
margin=dict(l=80, r=80, t=80, b=80)
|
| 815 |
+
)
|
| 816 |
+
|
| 817 |
+
# μ°¨νΈ μ€μμ νμ
|
| 818 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
| 819 |
+
with col2:
|
| 820 |
+
st.plotly_chart(fig)
|
| 821 |
+
|
| 822 |
+
# ν€μλ μΉ΄λλ‘ νμ
|
| 823 |
+
st.markdown("#### ν€μλ μΈλΆ μ€λͺ
")
|
| 824 |
+
cols = st.columns(min(len(keywords), 5))
|
| 825 |
+
for i, keyword in enumerate(keywords):
|
| 826 |
+
with cols[i % len(cols)]:
|
| 827 |
+
word = keyword.get('word', '')
|
| 828 |
+
score = keyword.get('score', 0)
|
| 829 |
+
|
| 830 |
+
# μ μμ λ°λ₯Έ μμ κ³μ°
|
| 831 |
+
r, g, b = 0, 0, 0
|
| 832 |
+
if sentiment_type == "κΈμ μ ":
|
| 833 |
+
g = min(200 + score * 5, 255)
|
| 834 |
+
r = max(255 - score * 20, 100)
|
| 835 |
+
elif sentiment_type == "λΆμ μ ":
|
| 836 |
+
r = min(200 + score * 5, 255)
|
| 837 |
+
g = max(255 - score * 20, 100)
|
| 838 |
+
else:
|
| 839 |
+
r = g = b = 128
|
| 840 |
+
|
| 841 |
+
# μΉ΄λ μμ±
|
| 842 |
+
st.markdown(f"""
|
| 843 |
+
<div style="background-color:rgba({r},{g},{b},0.2); padding:10px; border-radius:5px; text-align:center; margin:5px;">
|
| 844 |
+
<h3 style="margin:0;">{word}</h3>
|
| 845 |
+
<div style="background-color:#E0E0E0; border-radius:3px; margin-top:5px;">
|
| 846 |
+
<div style="width:{score*10}%; background-color:rgba({r},{g},{b},0.8); height:10px; border-radius:3px;"></div>
|
| 847 |
+
</div>
|
| 848 |
+
<p style="margin:2px; font-size:12px;">κ°λ: {score}/10</p>
|
| 849 |
+
</div>
|
| 850 |
+
""", unsafe_allow_html=True)
|
| 851 |
+
|
| 852 |
+
else:
|
| 853 |
+
st.info("ν€μλλ₯Ό μΆμΆνμ§ λͺ»νμ΅λλ€.")
|
| 854 |
+
|
| 855 |
+
# 4. μμ½ ν΅κ³
|
| 856 |
+
st.markdown("### μ£Όμ ν΅κ³")
|
| 857 |
+
col1, col2, col3 = st.columns(3)
|
| 858 |
+
with col1:
|
| 859 |
+
st.metric(label="κΈμ /λΆμ μ μ", value=f"{7 if sentiment_type == 'κΈμ μ ' else 3 if sentiment_type == 'λΆμ μ ' else 5}/10")
|
| 860 |
+
with col2:
|
| 861 |
+
st.metric(label="ν€μλ μ", value=len(keywords))
|
| 862 |
+
with col3:
|
| 863 |
+
avg_score = sum(keyword_scores) / len(keyword_scores) if keyword_scores else 0
|
| 864 |
+
st.metric(label="νκ· κ°λ", value=f"{avg_score:.1f}/10")
|
| 865 |
+
|
| 866 |
+
except Exception as e:
|
| 867 |
+
st.error(f"κ°μ λΆμ μ€λ₯: {str(e)}")
|
| 868 |
+
st.code(traceback.format_exc())
|
| 869 |
+
else:
|
| 870 |
+
st.warning("OpenAI API ν€κ° μ€μ λμ΄ μμ§ μμ΅λλ€. μ¬μ΄λλ°μμ API ν€λ₯Ό μ€μ ν΄μ£ΌμΈμ.")
|
| 871 |
+
|
| 872 |
+
elif menu == "μ κΈ°μ¬ μμ±νκΈ°":
|
| 873 |
+
st.header("μ κΈ°μ¬ μμ±νκΈ°")
|
| 874 |
+
|
| 875 |
+
articles = load_saved_articles()
|
| 876 |
+
if not articles:
|
| 877 |
+
st.warning("μ μ₯λ κΈ°μ¬κ° μμ΅λλ€. λ¨Όμ 'λ΄μ€ κΈ°μ¬ ν¬λ‘€λ§' λ©λ΄μμ κΈ°μ¬λ₯Ό μμ§ν΄μ£ΌμΈμ.")
|
| 878 |
+
else:
|
| 879 |
+
# κΈ°μ¬ μ ν
|
| 880 |
+
titles = [article['title'] for article in articles]
|
| 881 |
+
selected_title = st.selectbox("μλ³Έ κΈ°μ¬ μ ν", titles)
|
| 882 |
+
|
| 883 |
+
selected_article = next((a for a in articles if a['title'] == selected_title), None)
|
| 884 |
+
|
| 885 |
+
if selected_article:
|
| 886 |
+
st.write(f"**μλ³Έ μ λͺ©:** {selected_article['title']}")
|
| 887 |
+
|
| 888 |
+
with st.expander("μλ³Έ κΈ°μ¬ λ΄μ©"):
|
| 889 |
+
st.write(selected_article['content'])
|
| 890 |
+
|
| 891 |
+
prompt_text ="""λ€μ κΈ°μ¬ μμμ λ°λΌμ λ€μ μμ±ν΄μ€.
|
| 892 |
+
μν : λΉμ μ μ λ¬Έμ¬μ κΈ°μμ
λλ€.
|
| 893 |
+
μμ
: μ΅κ·Ό μΌμ΄λ μ¬κ±΄μ λν 보λμλ£λ₯Ό μμ±ν΄μΌ ν©λλ€. μλ£λ μ¬μ€μ κΈ°λ°μΌλ‘ νλ©°, κ°κ΄μ μ΄κ³ μ νν΄μΌ ν©λλ€.
|
| 894 |
+
μ§μΉ¨:
|
| 895 |
+
μ 곡λ μ 보λ₯Ό λ°νμΌλ‘ μ λ¬Έ 보λμλ£ νμμ λ§μΆ° κΈ°μ¬λ₯Ό μμ±νμΈμ.
|
| 896 |
+
κΈ°μ¬ μ λͺ©μ μ£Όμ λ₯Ό λͺ
νν λ°μνκ³ λ
μμ κ΄μ¬μ λ μ μλλ‘ μμ±ν©λλ€.
|
| 897 |
+
κΈ°μ¬ λ΄μ©μ μ ννκ³ κ°κ²°νλ©° μ€λλ ₯ μλ λ¬Έμ₯μΌλ‘ ꡬμ±ν©λλ€.
|
| 898 |
+
κ΄λ ¨μμ μΈν°λ·°λ₯Ό μΈμ© ννλ‘ λ£μ΄μ£ΌμΈμ.
|
| 899 |
+
μμ μ 보μ μ§μΉ¨μ μ°Έκ³ νμ¬ μ λ¬Έ 보λμλ£ νμμ κΈ°μ¬λ₯Ό μμ±ν΄ μ£ΌμΈμ"""
|
| 900 |
+
|
| 901 |
+
# μ΄λ―Έμ§ μμ± μ¬λΆ μ ν μ΅μ
μΆκ°
|
| 902 |
+
generate_image_too = st.checkbox("κΈ°μ¬ μμ± ν μ΄λ―Έμ§λ ν¨κ» μμ±νκΈ°", value=True)
|
| 903 |
+
|
| 904 |
+
if st.button("μ κΈ°μ¬ μμ±νκΈ°"):
|
| 905 |
+
if st.session_state.openai_api_key:
|
| 906 |
+
openai.api_key = st.session_state.openai_api_key
|
| 907 |
+
with st.spinner("κΈ°μ¬λ₯Ό μμ± μ€μ
λλ€..."):
|
| 908 |
+
new_article = generate_article(selected_article['content'], prompt_text)
|
| 909 |
+
|
| 910 |
+
st.write("**μμ±λ κΈ°μ¬:**")
|
| 911 |
+
st.write(new_article)
|
| 912 |
+
|
| 913 |
+
# μ΄λ―Έμ§ μμ±νκΈ° (μ΅μ
μ΄ μ νλ κ²½μ°)
|
| 914 |
+
if generate_image_too:
|
| 915 |
+
with st.spinner("κΈ°μ¬ κ΄λ ¨ μ΄λ―Έμ§λ₯Ό μμ± μ€μ
λλ€..."):
|
| 916 |
+
# μ΄λ―Έμ§ μμ± ν둬ννΈ μ€λΉ
|
| 917 |
+
image_prompt = f"""μ λ¬ΈκΈ°μ¬ μ λͺ© "{selected_article['title']}" μ λ³΄κ³ μ΄λ―Έμ§λ₯Ό λ§λ€μ΄μ€
|
| 918 |
+
μ΄λ―Έμ§μλ λ€μ μμκ° ν¬ν¨λμ΄μΌ ν©λλ€:
|
| 919 |
+
- κΈ°μ¬λ₯Ό μ΄ν΄ν μ μλ λμ
|
| 920 |
+
- κΈ°μ¬ λ΄μ©κ³Ό κ΄λ ¨λ ν
μ€νΈ
|
| 921 |
+
- μ¬ννκ² μ²λ¦¬
|
| 922 |
+
"""
|
| 923 |
+
|
| 924 |
+
# μ΄λ―Έμ§ μμ±
|
| 925 |
+
image_url = generate_image(image_prompt)
|
| 926 |
+
|
| 927 |
+
if image_url and not image_url.startswith("μ΄οΏ½οΏ½μ§ μμ± μ€λ₯"):
|
| 928 |
+
st.subheader("μμ±λ μ΄λ―Έμ§:")
|
| 929 |
+
st.image(image_url)
|
| 930 |
+
else:
|
| 931 |
+
st.error(image_url)
|
| 932 |
+
|
| 933 |
+
# μμ±λ κΈ°μ¬ μ μ₯ μ΅μ
|
| 934 |
+
if st.button("μμ±λ κΈ°μ¬ μ μ₯"):
|
| 935 |
+
new_article_data = {
|
| 936 |
+
'title': f"[μμ±λ¨] {selected_article['title']}",
|
| 937 |
+
'source': f"AI μμ± (μλ³Έ: {selected_article['source']})",
|
| 938 |
+
'date': datetime.now().strftime("%Y-%m-%d %H:%M"),
|
| 939 |
+
'description': new_article[:100] + "...",
|
| 940 |
+
'link': "",
|
| 941 |
+
'content': new_article
|
| 942 |
+
}
|
| 943 |
+
articles.append(new_article_data)
|
| 944 |
+
save_articles(articles)
|
| 945 |
+
st.success("μμ±λ κΈ°μ¬κ° μ μ₯λμμ΅λλ€!")
|
| 946 |
+
else:
|
| 947 |
+
st.warning("OpenAI API ν€λ₯Ό μ¬μ΄λλ°μμ μ€μ ν΄μ£ΌμΈμ.")
|
| 948 |
+
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
elif menu == "λ΄μ€ κΈ°μ¬ μμ½νκΈ°":
|
| 952 |
+
st.header("λ΄μ€ κΈ°μ¬ μμ½νκΈ°")
|
| 953 |
+
|
| 954 |
+
# ν μμ±
|
| 955 |
+
tab1, tab2, tab3 = st.tabs(["μΌλ³ μμ½", "μκ° κ°κ²© μμ½", "μ€μΌμ€λ¬ μν"])
|
| 956 |
+
|
| 957 |
+
# μΌλ³ μμ½ ν
|
| 958 |
+
with tab1:
|
| 959 |
+
st.subheader("λ§€μΌ μ ν΄μ§ μκ°μ κΈ°μ¬ μμ§νκΈ°")
|
| 960 |
+
|
| 961 |
+
# ν€μλ μ
λ ₯
|
| 962 |
+
daily_keyword = st.text_input("κ²μ ν€μλ", value="μΈκ³΅μ§λ₯", key="daily_keyword")
|
| 963 |
+
daily_num_articles = st.slider("μμ§ν κΈ°μ¬ μ", min_value=1, max_value=20, value=5, key="daily_num_articles")
|
| 964 |
+
|
| 965 |
+
# μκ° μ€μ
|
| 966 |
+
daily_col1, daily_col2 = st.columns(2)
|
| 967 |
+
with daily_col1:
|
| 968 |
+
daily_hour = st.selectbox("μ", range(24), format_func=lambda x: f"{x:02d}μ", key="daily_hour")
|
| 969 |
+
with daily_col2:
|
| 970 |
+
daily_minute = st.selectbox("λΆ", range(0, 60, 5), format_func=lambda x: f"{x:02d}λΆ", key="daily_minute")
|
| 971 |
+
|
| 972 |
+
# μΌλ³ μμ½ λ¦¬μ€νΈ
|
| 973 |
+
if 'daily_tasks' not in st.session_state:
|
| 974 |
+
st.session_state.daily_tasks = []
|
| 975 |
+
|
| 976 |
+
if st.button("μΌλ³ μμ½ μΆκ°"):
|
| 977 |
+
st.session_state.daily_tasks.append({
|
| 978 |
+
'hour': daily_hour,
|
| 979 |
+
'minute': daily_minute,
|
| 980 |
+
'keyword': daily_keyword,
|
| 981 |
+
'num_articles': daily_num_articles
|
| 982 |
+
})
|
| 983 |
+
st.success(f"μΌλ³ μμ½μ΄ μΆκ°λμμ΅λλ€: λ§€μΌ {daily_hour:02d}:{daily_minute:02d} - '{daily_keyword}'")
|
| 984 |
+
|
| 985 |
+
# μμ½ λͺ©λ‘ νμ
|
| 986 |
+
if st.session_state.daily_tasks:
|
| 987 |
+
st.subheader("μΌλ³ μμ½ λͺ©λ‘")
|
| 988 |
+
for i, task in enumerate(st.session_state.daily_tasks):
|
| 989 |
+
st.write(f"{i+1}. λ§€μΌ {task['hour']:02d}:{task['minute']:02d} - '{task['keyword']}' ({task['num_articles']}κ°)")
|
| 990 |
+
|
| 991 |
+
if st.button("μΌλ³ μμ½ μ΄κΈ°ν"):
|
| 992 |
+
st.session_state.daily_tasks = []
|
| 993 |
+
st.warning("μΌλ³ μμ½μ΄ λͺ¨λ μ΄κΈ°νλμμ΅λλ€.")
|
| 994 |
+
|
| 995 |
+
# μκ° κ°κ²© μμ½ ν
|
| 996 |
+
with tab2:
|
| 997 |
+
st.subheader("μκ° κ°κ²©μΌλ‘ κΈ°μ¬ μμ§νκΈ°")
|
| 998 |
+
|
| 999 |
+
# ν€μλ μ
λ ₯
|
| 1000 |
+
interval_keyword = st.text_input("κ²μ ν€μλ", value="λΉ
λ°μ΄ν°", key="interval_keyword")
|
| 1001 |
+
interval_num_articles = st.slider("μμ§ν κΈ°μ¬ μ", min_value=1, max_value=20, value=5, key="interval_num_articles")
|
| 1002 |
+
|
| 1003 |
+
# μκ° κ°κ²© μ€μ
|
| 1004 |
+
interval_minutes = st.number_input("μ€ν κ°κ²©(λΆ)", min_value=1, max_value=60*24, value=30, key="interval_minutes")
|
| 1005 |
+
|
| 1006 |
+
# μ¦μ μ€ν μ¬λΆ
|
| 1007 |
+
run_immediately = st.checkbox("μ¦μ μ€ν", value=True, help="체ν¬νλ©΄ μ€μΌμ€λ¬ μμ μ μ¦μ μ€νν©λλ€.")
|
| 1008 |
+
|
| 1009 |
+
# μκ° κ°κ²© μμ½ λ¦¬μ€νΈ
|
| 1010 |
+
if 'interval_tasks' not in st.session_state:
|
| 1011 |
+
st.session_state.interval_tasks = []
|
| 1012 |
+
|
| 1013 |
+
if st.button("μκ° κ°κ²© μμ½ μΆκ°"):
|
| 1014 |
+
st.session_state.interval_tasks.append({
|
| 1015 |
+
'interval_minutes': interval_minutes,
|
| 1016 |
+
'keyword': interval_keyword,
|
| 1017 |
+
'num_articles': interval_num_articles,
|
| 1018 |
+
'run_immediately': run_immediately
|
| 1019 |
+
})
|
| 1020 |
+
st.success(f"μκ° κ°κ²© μμ½μ΄ μΆκ°λμμ΅λλ€: {interval_minutes}λΆλ§λ€ - '{interval_keyword}'")
|
| 1021 |
+
|
| 1022 |
+
# μμ½ λͺ©λ‘ νμ
|
| 1023 |
+
if st.session_state.interval_tasks:
|
| 1024 |
+
st.subheader("μκ° κ°κ²© μμ½ λͺ©λ‘")
|
| 1025 |
+
for i, task in enumerate(st.session_state.interval_tasks):
|
| 1026 |
+
immediate_text = "μ¦μ μ€ν ν " if task['run_immediately'] else ""
|
| 1027 |
+
st.write(f"{i+1}. {immediate_text}{task['interval_minutes']}λΆλ§λ€ - '{task['keyword']}' ({task['num_articles']}κ°)")
|
| 1028 |
+
|
| 1029 |
+
if st.button("μκ° κ°κ²© μμ½ μ΄κΈ°ν"):
|
| 1030 |
+
st.session_state.interval_tasks = []
|
| 1031 |
+
st.warning("μκ° κ°κ²© μμ½μ΄ λͺ¨λ μ΄κΈ°νλμμ΅λλ€.")
|
| 1032 |
+
|
| 1033 |
+
# μ€μΌμ€λ¬ μν ν
|
| 1034 |
+
with tab3:
|
| 1035 |
+
st.subheader("μ€μΌμ€λ¬ μ μ΄ λ° μν")
|
| 1036 |
+
|
| 1037 |
+
col1, col2 = st.columns(2)
|
| 1038 |
+
|
| 1039 |
+
with col1:
|
| 1040 |
+
# μ€μΌμ€λ¬ μμ/μ€μ§ λ²νΌ
|
| 1041 |
+
if not global_scheduler_state.is_running:
|
| 1042 |
+
if st.button("μ€μΌμ€λ¬ μμ"):
|
| 1043 |
+
if not st.session_state.daily_tasks and not st.session_state.interval_tasks:
|
| 1044 |
+
st.error("μμ½λ μμ
μ΄ μμ΅λλ€. λ¨Όμ μΌλ³ μμ½ λλ μκ° κ°κ²© μμ½μ μΆκ°ν΄μ£ΌμΈμ.")
|
| 1045 |
+
else:
|
| 1046 |
+
start_scheduler(st.session_state.daily_tasks, st.session_state.interval_tasks)
|
| 1047 |
+
st.success("μ€μΌμ€λ¬κ° μμλμμ΅λλ€.")
|
| 1048 |
+
else:
|
| 1049 |
+
if st.button("μ€μΌμ€λ¬ μ€μ§"):
|
| 1050 |
+
stop_scheduler()
|
| 1051 |
+
st.warning("μ€μΌμ€λ¬κ° μ€μ§λμμ΅λλ€.")
|
| 1052 |
+
|
| 1053 |
+
with col2:
|
| 1054 |
+
# μ€μΌμ€λ¬ μν νμ
|
| 1055 |
+
if 'scheduler_status' in st.session_state:
|
| 1056 |
+
st.write(f"μν: {'μ€νμ€' if global_scheduler_state.is_running else 'μ€μ§'}")
|
| 1057 |
+
if global_scheduler_state.last_run:
|
| 1058 |
+
st.write(f"λ§μ§λ§ μ€ν: {global_scheduler_state.last_run.strftime('%Y-%m-%d %H:%M:%S')}")
|
| 1059 |
+
if global_scheduler_state.next_run and global_scheduler_state.is_running:
|
| 1060 |
+
st.write(f"λ€μ μ€ν: {global_scheduler_state.next_run.strftime('%Y-%m-%d %H:%M:%S')}")
|
| 1061 |
+
else:
|
| 1062 |
+
st.write("μν: μ€μ§")
|
| 1063 |
+
|
| 1064 |
+
# μμ½λ μμ
λͺ©λ‘
|
| 1065 |
+
if global_scheduler_state.scheduled_jobs:
|
| 1066 |
+
st.subheader("νμ¬ μ€ν μ€μΈ μμ½ μμ
")
|
| 1067 |
+
for i, job in enumerate(global_scheduler_state.scheduled_jobs):
|
| 1068 |
+
if job['type'] == 'daily':
|
| 1069 |
+
st.write(f"{i+1}. [μΌλ³] λ§€μΌ {job['time']} - '{job['keyword']}' ({job['num_articles']}κ°)")
|
| 1070 |
+
else:
|
| 1071 |
+
immediate_text = "[μ¦μ μ€ν ν] " if job.get('run_immediately', False) else ""
|
| 1072 |
+
st.write(f"{i+1}. [κ°κ²©] {immediate_text}{job['interval']} - '{job['keyword']}' ({job['num_articles']}κ°)")
|
| 1073 |
+
|
| 1074 |
+
# μ€μΌμ€λ¬ μ€ν κ²°κ³Ό
|
| 1075 |
+
if global_scheduler_state.scheduled_results:
|
| 1076 |
+
st.subheader("μ€μΌμ€λ¬ μ€ν κ²°κ³Ό")
|
| 1077 |
+
|
| 1078 |
+
# κ²°κ³Όλ₯Ό UIμ νμνκΈ° μ μ 볡μ¬
|
| 1079 |
+
results_for_display = global_scheduler_state.scheduled_results.copy()
|
| 1080 |
+
|
| 1081 |
+
if results_for_display:
|
| 1082 |
+
result_df = pd.DataFrame(results_for_display)
|
| 1083 |
+
result_df['μ€νμκ°'] = result_df['timestamp'].apply(lambda x: datetime.strptime(x, "%Y%m%d_%H%M%S").strftime("%Y-%m-%d %H:%M:%S"))
|
| 1084 |
+
result_df = result_df.rename(columns={
|
| 1085 |
+
'task_type': 'μμ
μ ν',
|
| 1086 |
+
'keyword': 'ν€μλ',
|
| 1087 |
+
'num_articles': 'κΈ°μ¬μ',
|
| 1088 |
+
'filename': 'νμΌλͺ
'
|
| 1089 |
+
})
|
| 1090 |
+
result_df['μμ
μ ν'] = result_df['μμ
μ ν'].apply(lambda x: 'μΌλ³' if x == 'daily' else 'μκ°κ°κ²©')
|
| 1091 |
+
|
| 1092 |
+
st.dataframe(
|
| 1093 |
+
result_df[['μμ
μ ν', 'ν€μλ', 'κΈ°μ¬μ', 'μ€νμκ°', 'νμΌλͺ
']],
|
| 1094 |
+
hide_index=True
|
| 1095 |
+
)
|
| 1096 |
+
|
| 1097 |
+
# μμ§λ νμΌ λ³΄κΈ°
|
| 1098 |
+
if os.path.exists('scheduled_news'):
|
| 1099 |
+
files = [f for f in os.listdir('scheduled_news') if f.endswith('.json')]
|
| 1100 |
+
if files:
|
| 1101 |
+
st.subheader("μμ§λ νμΌ μ΄κΈ°")
|
| 1102 |
+
selected_file = st.selectbox("νμΌ μ ν", files, index=len(files)-1)
|
| 1103 |
+
if selected_file and st.button("νμΌ λ΄μ© 보기"):
|
| 1104 |
+
with open(os.path.join('scheduled_news', selected_file), 'r', encoding='utf-8') as f:
|
| 1105 |
+
articles = json.load(f)
|
| 1106 |
+
|
| 1107 |
+
st.write(f"**νμΌλͺ
:** {selected_file}")
|
| 1108 |
+
st.write(f"**μμ§ κΈ°μ¬ μ:** {len(articles)}κ°")
|
| 1109 |
+
|
| 1110 |
+
for article in articles:
|
| 1111 |
+
with st.expander(f"{article['title']} - {article['source']}"):
|
| 1112 |
+
st.write(f"**μΆμ²:** {article['source']}")
|
| 1113 |
+
st.write(f"**λ μ§:** {article['date']}")
|
| 1114 |
+
st.write(f"**λ§ν¬:** {article['link']}")
|
| 1115 |
+
st.write("**λ³Έλ¬Έ:**")
|
| 1116 |
+
st.write(article['content'][:500] + "..." if len(article['content']) > 500 else article['content'])
|
| 1117 |
|
| 1118 |
+
# νΈν°
|
| 1119 |
+
st.markdown("---")
|
| 1120 |
+
st.markdown("Β© λ΄μ€ κΈ°μ¬ λꡬ @conanssam")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|