Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -54,6 +54,7 @@ def generate_image_embeddings(zip_file):
|
|
| 54 |
try:
|
| 55 |
# Extract images from zip
|
| 56 |
images = []
|
|
|
|
| 57 |
with zipfile.ZipFile(zip_file.name, "r") as zip_ref:
|
| 58 |
for file_info in zip_ref.filelist:
|
| 59 |
if file_info.filename.lower().endswith(
|
|
@@ -63,13 +64,17 @@ def generate_image_embeddings(zip_file):
|
|
| 63 |
img = Image.open(io.BytesIO(img_file.read())).convert("RGB")
|
| 64 |
images.append(img)
|
| 65 |
|
|
|
|
|
|
|
| 66 |
if len(images) == 0:
|
| 67 |
return None, "β No valid images found in the zip file"
|
| 68 |
|
| 69 |
# Generate embeddings
|
| 70 |
embeddings = []
|
|
|
|
| 71 |
with torch.no_grad():
|
| 72 |
for i, image in enumerate(images):
|
|
|
|
| 73 |
image_input = image_processor(
|
| 74 |
images=image,
|
| 75 |
max_num_patches=determine_max_value(image),
|
|
@@ -84,6 +89,7 @@ def generate_image_embeddings(zip_file):
|
|
| 84 |
embeddings.append(normalized_features.cpu().numpy())
|
| 85 |
|
| 86 |
embeddings = np.vstack(embeddings)
|
|
|
|
| 87 |
|
| 88 |
# Create JSON output
|
| 89 |
result = json.dumps(
|
|
@@ -96,10 +102,13 @@ def generate_image_embeddings(zip_file):
|
|
| 96 |
)
|
| 97 |
|
| 98 |
message = f"β
Successfully generated embeddings for {len(images)} images\nShape: {embeddings.shape}"
|
|
|
|
| 99 |
return result, message
|
| 100 |
|
| 101 |
except Exception as e:
|
| 102 |
-
|
|
|
|
|
|
|
| 103 |
|
| 104 |
|
| 105 |
def extract_frames(video_path: str, fps: int = 4):
|
|
@@ -151,15 +160,19 @@ def generate_video_embeddings(video_file, fps):
|
|
| 151 |
"""
|
| 152 |
try:
|
| 153 |
# Extract frames
|
|
|
|
| 154 |
frames = extract_frames(video_file.name, fps)
|
|
|
|
| 155 |
|
| 156 |
if len(frames) == 0:
|
| 157 |
return None, "β No frames could be extracted from the video"
|
| 158 |
|
| 159 |
# Generate embeddings
|
| 160 |
embeddings = []
|
|
|
|
| 161 |
with torch.no_grad():
|
| 162 |
for i, frame in enumerate(frames):
|
|
|
|
| 163 |
image_input = image_processor(
|
| 164 |
images=frame,
|
| 165 |
max_num_patches=determine_max_value(frame),
|
|
@@ -174,6 +187,7 @@ def generate_video_embeddings(video_file, fps):
|
|
| 174 |
embeddings.append(normalized_features.cpu().numpy())
|
| 175 |
|
| 176 |
embeddings = np.vstack(embeddings)
|
|
|
|
| 177 |
|
| 178 |
# Create JSON output
|
| 179 |
result = json.dumps(
|
|
@@ -187,10 +201,13 @@ def generate_video_embeddings(video_file, fps):
|
|
| 187 |
)
|
| 188 |
|
| 189 |
message = f"β
Successfully generated embeddings for {len(frames)} frames (extracted at {fps} fps)\nShape: {embeddings.shape}"
|
|
|
|
| 190 |
return result, message
|
| 191 |
|
| 192 |
except Exception as e:
|
| 193 |
-
|
|
|
|
|
|
|
| 194 |
|
| 195 |
|
| 196 |
# Create Gradio interface
|
|
|
|
| 54 |
try:
|
| 55 |
# Extract images from zip
|
| 56 |
images = []
|
| 57 |
+
print(f"Extracting images from zip file: {zip_file.name}")
|
| 58 |
with zipfile.ZipFile(zip_file.name, "r") as zip_ref:
|
| 59 |
for file_info in zip_ref.filelist:
|
| 60 |
if file_info.filename.lower().endswith(
|
|
|
|
| 64 |
img = Image.open(io.BytesIO(img_file.read())).convert("RGB")
|
| 65 |
images.append(img)
|
| 66 |
|
| 67 |
+
print(f"Extracted {len(images)} images from zip file")
|
| 68 |
+
|
| 69 |
if len(images) == 0:
|
| 70 |
return None, "β No valid images found in the zip file"
|
| 71 |
|
| 72 |
# Generate embeddings
|
| 73 |
embeddings = []
|
| 74 |
+
print(f"Generating embeddings for {len(images)} images...")
|
| 75 |
with torch.no_grad():
|
| 76 |
for i, image in enumerate(images):
|
| 77 |
+
print(f"Processing image {i + 1}/{len(images)}")
|
| 78 |
image_input = image_processor(
|
| 79 |
images=image,
|
| 80 |
max_num_patches=determine_max_value(image),
|
|
|
|
| 89 |
embeddings.append(normalized_features.cpu().numpy())
|
| 90 |
|
| 91 |
embeddings = np.vstack(embeddings)
|
| 92 |
+
print(f"Embeddings shape: {embeddings.shape}")
|
| 93 |
|
| 94 |
# Create JSON output
|
| 95 |
result = json.dumps(
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
message = f"β
Successfully generated embeddings for {len(images)} images\nShape: {embeddings.shape}"
|
| 105 |
+
print(message)
|
| 106 |
return result, message
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
+
error_msg = f"β Error: {str(e)}"
|
| 110 |
+
print(error_msg)
|
| 111 |
+
return None, error_msg
|
| 112 |
|
| 113 |
|
| 114 |
def extract_frames(video_path: str, fps: int = 4):
|
|
|
|
| 160 |
"""
|
| 161 |
try:
|
| 162 |
# Extract frames
|
| 163 |
+
print(f"Extracting frames from video: {video_file.name} at {fps} fps")
|
| 164 |
frames = extract_frames(video_file.name, fps)
|
| 165 |
+
print(f"Extracted {len(frames)} frames from video")
|
| 166 |
|
| 167 |
if len(frames) == 0:
|
| 168 |
return None, "β No frames could be extracted from the video"
|
| 169 |
|
| 170 |
# Generate embeddings
|
| 171 |
embeddings = []
|
| 172 |
+
print(f"Generating embeddings for {len(frames)} frames...")
|
| 173 |
with torch.no_grad():
|
| 174 |
for i, frame in enumerate(frames):
|
| 175 |
+
print(f"Processing frame {i + 1}/{len(frames)}")
|
| 176 |
image_input = image_processor(
|
| 177 |
images=frame,
|
| 178 |
max_num_patches=determine_max_value(frame),
|
|
|
|
| 187 |
embeddings.append(normalized_features.cpu().numpy())
|
| 188 |
|
| 189 |
embeddings = np.vstack(embeddings)
|
| 190 |
+
print(f"Embeddings shape: {embeddings.shape}")
|
| 191 |
|
| 192 |
# Create JSON output
|
| 193 |
result = json.dumps(
|
|
|
|
| 201 |
)
|
| 202 |
|
| 203 |
message = f"β
Successfully generated embeddings for {len(frames)} frames (extracted at {fps} fps)\nShape: {embeddings.shape}"
|
| 204 |
+
print(message)
|
| 205 |
return result, message
|
| 206 |
|
| 207 |
except Exception as e:
|
| 208 |
+
error_msg = f"β Error: {str(e)}"
|
| 209 |
+
print(error_msg)
|
| 210 |
+
return None, error_msg
|
| 211 |
|
| 212 |
|
| 213 |
# Create Gradio interface
|