JakeFake222 commited on
Commit
9e74b5e
Β·
verified Β·
1 Parent(s): 3643128

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +77 -6
  2. app.py +13 -0
  3. requirements.txt +1 -0
README.md CHANGED
@@ -1,12 +1,83 @@
1
  ---
2
- title: Maker Agent
3
- emoji: πŸš€
4
- colorFrom: pink
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 6.0.2
8
  app_file: app.py
9
  pinned: false
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: MAKER Agent
3
+ emoji: πŸ”§
4
+ colorFrom: indigo
5
+ colorTo: purple
6
  sdk: gradio
 
7
  app_file: app.py
8
  pinned: false
9
+ license: mit
10
+ short_description: Reliable AI Agent with Voting
11
  ---
12
 
13
+ # πŸ”§ MAKER Agent
14
+
15
+ **Reliable AI with Voting & Red-Flagging**
16
+
17
+ Based on the paper: [Solving a Million-Step LLM Task with Zero Errors](https://arxiv.org/abs/2511.09030)
18
+
19
+ ## What is MAKER?
20
+
21
+ MAKER (Massively Decomposed Agentic Processes) is a framework that achieves **near-zero errors** over long task sequences by:
22
+
23
+ | Pillar | Description |
24
+ |--------|-------------|
25
+ | **Maximal Decomposition** | Break tasks into single-step atomic operations |
26
+ | **K-Voting** | Sample multiple times, winner needs K votes ahead |
27
+ | **Red-Flagging** | Discard suspicious outputs (don't repair them) |
28
+
29
+ ## Key Insight
30
+
31
+ > *"Reliability is an engineering problem, not a model problem."*
32
+
33
+ Instead of waiting for better models, you can achieve near-zero errors TODAY using smaller, cheaper models with statistical voting.
34
+
35
+ The paper achieved **1,000,000 steps with ZERO errors** using gpt-4.1-mini!
36
+
37
+ ## Features
38
+
39
+ - πŸ” **Web Search**: Optional DuckDuckGo search (free, no API key)
40
+ - πŸ“ **File Upload**: PDF, DOCX, TXT, images, and more
41
+ - πŸ—³οΈ **Voting**: Configurable K parameter for reliability vs speed
42
+ - 🚩 **Red-Flagging**: Automatic detection and discarding of suspicious outputs
43
+ - πŸ”Œ **Multiple LLMs**: OpenAI, Anthropic, Groq, Together, OpenRouter
44
+
45
+ ## Usage
46
+
47
+ 1. **Setup**: Enter your API key and configure K (votes needed)
48
+ 2. **Query**: Ask questions with optional web search or file context
49
+ 3. **Results**: See the winning answer with vote distribution
50
+
51
+ ## Supported LLM Providers
52
+
53
+ | Provider | Models |
54
+ |----------|--------|
55
+ | OpenAI | gpt-4o-mini, gpt-4o, etc. |
56
+ | Anthropic | claude-sonnet, claude-opus |
57
+ | Groq | llama-3.3-70b (fast!) |
58
+ | Together | Llama, Mistral, etc. |
59
+ | OpenRouter | 100+ models |
60
+
61
+ ## Local Development
62
+
63
+ ```bash
64
+ git clone https://huggingface.co/spaces/YOUR_USERNAME/maker-agent
65
+ cd maker-agent
66
+ pip install -r requirements.txt
67
+ python app.py
68
+ ```
69
+
70
+ ## Paper Citation
71
+
72
+ ```bibtex
73
+ @article{meyerson2025maker,
74
+ title={Solving a Million-Step LLM Task with Zero Errors},
75
+ author={Meyerson, Elliot and others},
76
+ journal={arXiv preprint arXiv:2511.09030},
77
+ year={2025}
78
+ }
79
+ ```
80
+
81
+ ## License
82
+
83
+ MIT
app.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def greet(name):
4
+ return f"Hello {name}!"
5
+
6
+ with gr.Blocks() as demo:
7
+ gr.Markdown("# Test App")
8
+ name = gr.Textbox(label="Name")
9
+ output = gr.Textbox(label="Output")
10
+ btn = gr.Button("Greet")
11
+ btn.click(greet, name, output)
12
+
13
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ gradio