Spaces:
Sleeping
Sleeping
Commit
·
76d2426
1
Parent(s):
99ba1d7
deploy app to space
Browse files- App.py +193 -0
- lda_model.joblib +3 -0
- topic_labels.joblib +3 -0
- vectorizer.joblib +3 -0
App.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import re
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import joblib
|
| 6 |
+
import datetime
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
from nltk.tokenize import TreebankWordTokenizer
|
| 10 |
+
from nltk.stem import WordNetLemmatizer
|
| 11 |
+
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
| 12 |
+
import os
|
| 13 |
+
import time
|
| 14 |
+
import zipfile
|
| 15 |
+
|
| 16 |
+
# Load models and label mapping
|
| 17 |
+
lda = joblib.load("lda_model.joblib")
|
| 18 |
+
vectorizer = joblib.load("vectorizer.joblib")
|
| 19 |
+
auto_labels = joblib.load("topic_labels.joblib")
|
| 20 |
+
|
| 21 |
+
#Optional topic summaries
|
| 22 |
+
topic_summaries = {
|
| 23 |
+
"Politics & Gun Rights": "Discussions about government policies, laws, gun control, and rights.",
|
| 24 |
+
"Computing & Hardware": "Technical issues and terms related to computer hardware and drivers.",
|
| 25 |
+
"Programming & Software": "Programming terms, file handling, software output.",
|
| 26 |
+
"Sports & Games": "Topics related to teams, players, seasons, and matches.",
|
| 27 |
+
"Health & Medicine": "Diseases, treatment, healthcare, and medical facilities.",
|
| 28 |
+
"Religion & Philosophy": "Talks involving faith, belief systems, philosophical views.",
|
| 29 |
+
"Space & NASA": "Space exploration, NASA missions, satellites, and astronomy.",
|
| 30 |
+
"Cryptography & Security": "Discussions on encryption, digital security, and data protection.",
|
| 31 |
+
"Internet & Networking": "Terms around internet use, FTP, web versions, and networks.",
|
| 32 |
+
"Middle East Politics & Conflicts": "Topics involving Israel, Armenia, conflict regions."
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
#Tokenizer and lemmatizer
|
| 36 |
+
tokenizer = TreebankWordTokenizer()
|
| 37 |
+
lemmatizer = WordNetLemmatizer()
|
| 38 |
+
|
| 39 |
+
# --- Utility Functions ---
|
| 40 |
+
|
| 41 |
+
def preprocess(text):
|
| 42 |
+
text = re.sub(r'\W+', ' ', text.lower())
|
| 43 |
+
tokens = tokenizer.tokenize(text)
|
| 44 |
+
tokens = [lemmatizer.lemmatize(w) for w in tokens if w not in ENGLISH_STOP_WORDS and len(w) > 2 and w.isalpha()]
|
| 45 |
+
return ' '.join(tokens)
|
| 46 |
+
|
| 47 |
+
def get_topic_keywords(model, vectorizer, topic_idx, top_n=10):
|
| 48 |
+
feature_names = vectorizer.get_feature_names_out()
|
| 49 |
+
topic = model.components_[topic_idx]
|
| 50 |
+
top_indices = topic.argsort()[:-top_n - 1:-1]
|
| 51 |
+
return [feature_names[i] for i in top_indices]
|
| 52 |
+
|
| 53 |
+
def plot_topic_distribution(distribution, labels):
|
| 54 |
+
plt.figure(figsize=(8, 4))
|
| 55 |
+
plt.bar(range(len(distribution)), distribution, tick_label=labels)
|
| 56 |
+
plt.xticks(rotation=45, ha="right")
|
| 57 |
+
plt.ylabel("Probability")
|
| 58 |
+
plt.title("Topic Distribution")
|
| 59 |
+
plt.tight_layout()
|
| 60 |
+
buf = BytesIO()
|
| 61 |
+
plt.savefig(buf, format="png")
|
| 62 |
+
plt.close()
|
| 63 |
+
buf.seek(0)
|
| 64 |
+
return Image.open(buf)
|
| 65 |
+
|
| 66 |
+
def save_prediction_file(text):
|
| 67 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 68 |
+
filename = f"lda_prediction_{timestamp}.txt"
|
| 69 |
+
with open(filename, "w", encoding="utf-8") as f:
|
| 70 |
+
f.write(text)
|
| 71 |
+
return filename
|
| 72 |
+
|
| 73 |
+
def cleanup_old_predictions(directory=".", extension=".txt", max_age_minutes=10):
|
| 74 |
+
now = time.time()
|
| 75 |
+
max_age = max_age_minutes * 60
|
| 76 |
+
for fname in os.listdir(directory):
|
| 77 |
+
if fname.endswith(extension) and fname.startswith("lda_prediction_"):
|
| 78 |
+
full_path = os.path.join(directory, fname)
|
| 79 |
+
if os.path.isfile(full_path) and (now - os.path.getmtime(full_path)) > max_age:
|
| 80 |
+
try:
|
| 81 |
+
os.remove(full_path)
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"Failed to delete {fname}: {e}")
|
| 84 |
+
|
| 85 |
+
def download_log():
|
| 86 |
+
zip_filename = "lda_predictions_log.zip"
|
| 87 |
+
with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
|
| 88 |
+
zipf.write("lda_predictions_log.csv")
|
| 89 |
+
return zip_filename
|
| 90 |
+
|
| 91 |
+
def save_feedback(text, feedback):
|
| 92 |
+
timestamp = datetime.datetime.now().isoformat()
|
| 93 |
+
log_entry = pd.DataFrame([{
|
| 94 |
+
"timestamp": timestamp,
|
| 95 |
+
"feedback": feedback,
|
| 96 |
+
"text_excerpt": text[:300].replace('\n', ' ') + "..."
|
| 97 |
+
}])
|
| 98 |
+
feedback_log = "lda_feedback_log.csv"
|
| 99 |
+
log_entry.to_csv(feedback_log, mode='a', header=not os.path.exists(feedback_log), index=False)
|
| 100 |
+
return " Feedback recorded. Thank you!"
|
| 101 |
+
|
| 102 |
+
# --- Main Prediction Function ---
|
| 103 |
+
|
| 104 |
+
def predict_topic(text_input, file_input):
|
| 105 |
+
cleanup_old_predictions()
|
| 106 |
+
|
| 107 |
+
if file_input is not None:
|
| 108 |
+
text = file_input.read().decode("utf-8")
|
| 109 |
+
elif text_input.strip():
|
| 110 |
+
text = text_input
|
| 111 |
+
else:
|
| 112 |
+
return "Please provide input", None, None
|
| 113 |
+
|
| 114 |
+
cleaned = preprocess(text)
|
| 115 |
+
bow = vectorizer.transform([cleaned])
|
| 116 |
+
topic_distribution = lda.transform(bow)[0]
|
| 117 |
+
dominant_topic = topic_distribution.argmax()
|
| 118 |
+
label = auto_labels.get(dominant_topic, f"Topic {dominant_topic+1}")
|
| 119 |
+
top_words = get_topic_keywords(lda, vectorizer, dominant_topic)
|
| 120 |
+
summary = topic_summaries.get(label, "No summary available.")
|
| 121 |
+
|
| 122 |
+
# Confidence threshold warning
|
| 123 |
+
confidence_threshold = 0.4
|
| 124 |
+
if topic_distribution[dominant_topic] < confidence_threshold:
|
| 125 |
+
label += " ( Low confidence)"
|
| 126 |
+
summary = " The model is uncertain. Try providing more context or a longer input."
|
| 127 |
+
|
| 128 |
+
# Log entry
|
| 129 |
+
timestamp = datetime.datetime.now().isoformat()
|
| 130 |
+
log_entry = pd.DataFrame([{
|
| 131 |
+
"timestamp": timestamp,
|
| 132 |
+
"predicted_topic": label,
|
| 133 |
+
"dominant_topic_index": dominant_topic,
|
| 134 |
+
"top_words": ", ".join(top_words),
|
| 135 |
+
"text_excerpt": text[:300].replace('\n', ' ') + "..."
|
| 136 |
+
}])
|
| 137 |
+
log_path = "lda_predictions_log.csv"
|
| 138 |
+
log_entry.to_csv(log_path, mode='a', header=not os.path.exists(log_path), index=False)
|
| 139 |
+
|
| 140 |
+
chart = plot_topic_distribution(topic_distribution, [auto_labels.get(i, f"Topic {i+1}") for i in range(len(topic_distribution))])
|
| 141 |
+
|
| 142 |
+
result = f" **Predicted Topic:** {label}\n\n"
|
| 143 |
+
result += f" **Summary:** {summary}\n\n"
|
| 144 |
+
result += f" **Top Words:** {', '.join(top_words)}\n\n"
|
| 145 |
+
result += " **Topic Distribution:**\n"
|
| 146 |
+
for idx, prob in enumerate(topic_distribution):
|
| 147 |
+
tlabel = auto_labels.get(idx, f"Topic {idx+1}")
|
| 148 |
+
result += f"{tlabel}: {prob:.3f}\n"
|
| 149 |
+
|
| 150 |
+
prediction_file = save_prediction_file(result)
|
| 151 |
+
return result, chart, prediction_file
|
| 152 |
+
|
| 153 |
+
# --- Gradio Interface ---
|
| 154 |
+
|
| 155 |
+
with gr.Blocks() as demo:
|
| 156 |
+
gr.Markdown("## Topic Modeling with LDA")
|
| 157 |
+
gr.Markdown("Upload a `.txt` file or paste in text. See predicted topic, keywords, and a chart.")
|
| 158 |
+
|
| 159 |
+
with gr.Row():
|
| 160 |
+
with gr.Column():
|
| 161 |
+
text_input = gr.Textbox(lines=10, label=" Paste Text")
|
| 162 |
+
file_input = gr.File(label=" Or Upload a .txt File", file_types=[".txt"])
|
| 163 |
+
predict_btn = gr.Button(" Predict Topic")
|
| 164 |
+
download_btn = gr.Button("⬇ Download All Logs")
|
| 165 |
+
|
| 166 |
+
feedback_input = gr.Radio(
|
| 167 |
+
choices=["Accurate", " Inaccurate", "Unclear"],
|
| 168 |
+
label=" Was this prediction useful?",
|
| 169 |
+
interactive=True
|
| 170 |
+
)
|
| 171 |
+
feedback_btn = gr.Button("Submit Feedback")
|
| 172 |
+
feedback_output = gr.Textbox(visible=False)
|
| 173 |
+
|
| 174 |
+
with gr.Column():
|
| 175 |
+
output_text = gr.Textbox(label=" Prediction Result")
|
| 176 |
+
output_chart = gr.Image(type="pil", label=" Topic Distribution")
|
| 177 |
+
download_prediction = gr.File(label="⬇ Download This Prediction")
|
| 178 |
+
|
| 179 |
+
predict_btn.click(
|
| 180 |
+
fn=predict_topic,
|
| 181 |
+
inputs=[text_input, file_input],
|
| 182 |
+
outputs=[output_text, output_chart, download_prediction]
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
download_btn.click(fn=download_log, outputs=[gr.File()])
|
| 186 |
+
|
| 187 |
+
feedback_btn.click(
|
| 188 |
+
fn=save_feedback,
|
| 189 |
+
inputs=[text_input, feedback_input],
|
| 190 |
+
outputs=[feedback_output]
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
demo.launch()
|
lda_model.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3371484707c0ca3a35348aab1134eb9fbb2376ec30808fc65916c5852419758b
|
| 3 |
+
size 4572069
|
topic_labels.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d73a67d3020a72d2b6a70491eaabc006f46ed077d4fedecb5d33d3a63d01792
|
| 3 |
+
size 146
|
vectorizer.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b71e13c424eaef2f0aa60ebb99805e0909f3b28db74d22e2e2f764d63a414d2
|
| 3 |
+
size 371927
|