File size: 74,043 Bytes
8f4d405 4e3f60e 8f4d405 4e3f60e 8f4d405 4e3f60e a4d66c0 48f2898 a4d66c0 4e3f60e 8f4d405 927854c 8f4d405 927854c 8f4d405 927854c 8f4d405 927854c 8f4d405 927854c 8f4d405 927854c 8f4d405 927854c 8f4d405 927854c 8f4d405 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 |
# context_manager.py
import sqlite3
import json
import logging
import uuid
import hashlib
import threading
import time
import os
from pathlib import Path
from contextlib import contextmanager
from datetime import datetime, timedelta
from typing import Dict, Optional, List
logger = logging.getLogger(__name__)
class TransactionManager:
"""Manage database transactions with proper locking"""
def __init__(self, db_path):
self.db_path = db_path
self._lock = threading.RLock()
self._connections = {}
@contextmanager
def transaction(self, session_id=None):
"""Context manager for database transactions with automatic rollback"""
conn = None
cursor = None
try:
with self._lock:
conn = sqlite3.connect(self.db_path, isolation_level='IMMEDIATE')
conn.execute('PRAGMA journal_mode=WAL') # Write-Ahead Logging for better concurrency
conn.execute('PRAGMA busy_timeout=5000') # 5 second timeout for locks
cursor = conn.cursor()
yield cursor
conn.commit()
logger.debug(f"Transaction committed for session {session_id}")
except Exception as e:
if conn:
conn.rollback()
logger.error(f"Transaction rolled back for session {session_id}: {e}")
raise
finally:
if conn:
conn.close()
class EfficientContextManager:
def __init__(self, llm_router=None, db_path=None):
self.session_cache = {} # In-memory for active sessions
self._session_cache = {} # Enhanced in-memory cache with timestamps
self.cache_config = {
"max_session_size": 10, # MB per session
"ttl": 3600, # 1 hour
"compression": "gzip",
"eviction_policy": "LRU"
}
# Use provided db_path or get from config/env, default to /tmp for Docker
if db_path is None:
try:
from config import settings
db_path = settings.db_path
except (ImportError, AttributeError):
# Fallback: check environment variable or use /tmp
# os is already imported at top of file
db_path = os.getenv("DB_PATH", "/tmp/sessions.db")
self.db_path = db_path
# Ensure directory exists
db_dir = os.path.dirname(self.db_path)
if db_dir and not os.path.exists(db_dir):
os.makedirs(db_dir, exist_ok=True)
logger.info(f"Created database directory: {db_dir}")
self.llm_router = llm_router # For generating context summaries
logger.info(f"Initializing ContextManager with DB path: {self.db_path}")
self.transaction_manager = TransactionManager(self.db_path)
self._init_database()
self.optimize_database_indexes()
def _init_database(self):
"""Initialize database and create tables"""
try:
logger.info("Initializing database...")
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Create sessions table if not exists
cursor.execute("""
CREATE TABLE IF NOT EXISTS sessions (
session_id TEXT PRIMARY KEY,
user_id TEXT DEFAULT 'Test_Any',
created_at TIMESTAMP,
last_activity TIMESTAMP,
context_data TEXT,
user_metadata TEXT
)
""")
# Add user_id column to existing sessions table if it doesn't exist
try:
cursor.execute("ALTER TABLE sessions ADD COLUMN user_id TEXT DEFAULT 'Test_Any'")
logger.info("✓ Added user_id column to sessions table")
except sqlite3.OperationalError:
# Column already exists
pass
logger.info("✓ Sessions table ready")
# Create interactions table
cursor.execute("""
CREATE TABLE IF NOT EXISTS interactions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT REFERENCES sessions(session_id),
user_input TEXT,
context_snapshot TEXT,
created_at TIMESTAMP,
FOREIGN KEY(session_id) REFERENCES sessions(session_id)
)
""")
logger.info("✓ Interactions table ready")
# Create user_contexts table (persistent user persona summaries)
cursor.execute("""
CREATE TABLE IF NOT EXISTS user_contexts (
user_id TEXT PRIMARY KEY,
persona_summary TEXT,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
logger.info("✓ User contexts table ready")
# Create session_contexts table (session summaries)
cursor.execute("""
CREATE TABLE IF NOT EXISTS session_contexts (
session_id TEXT PRIMARY KEY,
user_id TEXT,
session_summary TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY(session_id) REFERENCES sessions(session_id),
FOREIGN KEY(user_id) REFERENCES user_contexts(user_id)
)
""")
logger.info("✓ Session contexts table ready")
# Create interaction_contexts table (individual interaction summaries)
cursor.execute("""
CREATE TABLE IF NOT EXISTS interaction_contexts (
interaction_id TEXT PRIMARY KEY,
session_id TEXT,
user_input TEXT,
system_response TEXT,
interaction_summary TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY(session_id) REFERENCES sessions(session_id)
)
""")
logger.info("✓ Interaction contexts table ready")
conn.commit()
conn.close()
# Update schema with new columns and tables for user change tracking
self._update_database_schema()
logger.info("Database initialization complete")
except Exception as e:
logger.error(f"Database initialization error: {e}", exc_info=True)
def _update_database_schema(self):
"""Add missing columns and tables for user change tracking"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Add needs_refresh column to interaction_contexts
try:
cursor.execute("""
ALTER TABLE interaction_contexts
ADD COLUMN needs_refresh INTEGER DEFAULT 0
""")
logger.info("✓ Added needs_refresh column to interaction_contexts")
except sqlite3.OperationalError:
pass # Column already exists
# Create user change log table
cursor.execute("""
CREATE TABLE IF NOT EXISTS user_change_log (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT,
old_user_id TEXT,
new_user_id TEXT,
timestamp TIMESTAMP,
FOREIGN KEY(session_id) REFERENCES sessions(session_id)
)
""")
conn.commit()
conn.close()
logger.info("✓ Database schema updated successfully for user change tracking")
# Update interactions table for deduplication
self._update_interactions_table()
except Exception as e:
logger.error(f"Schema update error: {e}", exc_info=True)
def _update_interactions_table(self):
"""Add interaction_hash column for deduplication"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Check if column already exists
cursor.execute("PRAGMA table_info(interactions)")
columns = [row[1] for row in cursor.fetchall()]
# Add interaction_hash column if it doesn't exist
if 'interaction_hash' not in columns:
try:
cursor.execute("""
ALTER TABLE interactions
ADD COLUMN interaction_hash TEXT
""")
logger.info("✓ Added interaction_hash column to interactions table")
except sqlite3.OperationalError:
pass # Column already exists
# Create unique index for deduplication (this enforces uniqueness)
try:
cursor.execute("""
CREATE UNIQUE INDEX IF NOT EXISTS idx_interaction_hash_unique
ON interactions(interaction_hash)
""")
logger.info("✓ Created unique index on interaction_hash")
except sqlite3.OperationalError:
# Index might already exist, try non-unique index as fallback
cursor.execute("""
CREATE INDEX IF NOT EXISTS idx_interaction_hash
ON interactions(interaction_hash)
""")
conn.commit()
conn.close()
logger.info("✓ Interactions table updated for deduplication")
except Exception as e:
logger.error(f"Error updating interactions table: {e}", exc_info=True)
async def manage_context(self, session_id: str, user_input: str, user_id: str = "Test_Any") -> dict:
"""
Efficient context management with separated session/user caching
STEP 1: Fetch User Context (if available)
STEP 2: Get Previous Interaction Contexts
STEP 3: Combine for workflow use
"""
# Use session-only cache key to prevent user_id conflicts
session_cache_key = f"session_{session_id}"
user_cache_key = f"user_{user_id}"
# Get session context from cache
session_context = self._get_from_memory_cache(session_cache_key)
# Check if cached session context matches current user_id
# Handle both old and new cache formats
cached_entry = self.session_cache.get(session_cache_key)
if cached_entry:
# Extract actual context from cache entry
if isinstance(cached_entry, dict) and 'value' in cached_entry:
actual_context = cached_entry.get('value', {})
else:
actual_context = cached_entry
if actual_context and actual_context.get("user_id") != user_id:
# User changed, invalidate session cache
logger.info(f"User mismatch in cache for session {session_id}, invalidating cache")
session_context = None
if session_cache_key in self.session_cache:
del self.session_cache[session_cache_key]
else:
session_context = actual_context
# Get user context separately
user_context = self._get_from_memory_cache(user_cache_key)
if not session_context:
# Retrieve from database with user context
session_context = await self._retrieve_from_db(session_id, user_input, user_id)
# Step 2: Cache session context with TTL
self.add_context_cache(session_cache_key, session_context, ttl=self.cache_config.get("ttl", 3600))
# Handle user context separately - load only once and cache thereafter
# Cache does not refer to database after initial load
if not user_context or not user_context.get("user_context_loaded"):
user_context_data = await self.get_user_context(user_id)
user_context = {
"user_context": user_context_data,
"user_context_loaded": True,
"user_id": user_id
}
# Cache user context separately - this is the only database query for user context
self._warm_memory_cache(user_cache_key, user_context)
logger.debug(f"User context loaded once for {user_id} and cached")
else:
# User context already cached, use it without database query
logger.debug(f"Using cached user context for {user_id}")
# Merge contexts without duplication
merged_context = {
**session_context,
"user_context": user_context.get("user_context", ""),
"user_context_loaded": True,
"user_id": user_id # Ensure current user_id is used
}
# Update context with new interaction
updated_context = self._update_context(merged_context, user_input, user_id=user_id)
return self._optimize_context(updated_context)
async def get_user_context(self, user_id: str) -> str:
"""
STEP 1: Fetch or generate User Context (500-token persona summary)
Available for all interactions except first time per user
"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Check if user context exists
cursor.execute("""
SELECT persona_summary FROM user_contexts WHERE user_id = ?
""", (user_id,))
row = cursor.fetchone()
if row and row[0]:
# Existing user context found
conn.close()
logger.info(f"✓ User context loaded for {user_id}")
return row[0]
# Generate new user context from all historical data
logger.info(f"Generating new user context for {user_id}")
# Fetch all historical Session and Interaction contexts for this user
all_session_summaries = []
all_interaction_summaries = []
# Get all session contexts
cursor.execute("""
SELECT session_summary FROM session_contexts WHERE user_id = ?
ORDER BY created_at DESC LIMIT 50
""", (user_id,))
for row in cursor.fetchall():
if row[0]:
all_session_summaries.append(row[0])
# Get all interaction contexts
cursor.execute("""
SELECT ic.interaction_summary
FROM interaction_contexts ic
JOIN sessions s ON ic.session_id = s.session_id
WHERE s.user_id = ?
ORDER BY ic.created_at DESC LIMIT 100
""", (user_id,))
for row in cursor.fetchall():
if row[0]:
all_interaction_summaries.append(row[0])
conn.close()
if not all_session_summaries and not all_interaction_summaries:
# First time user - no context to generate
logger.info(f"No historical data for {user_id} - first time user")
return ""
# Generate persona summary using LLM (500 tokens)
historical_data = "\n\n".join(all_session_summaries + all_interaction_summaries[:20])
if self.llm_router:
prompt = f"""Generate a concise 500-token persona summary for user {user_id} based on their interaction history:
Historical Context:
{historical_data}
Create a persona summary that captures:
- Communication style and preferences
- Common topics and interests
- Interaction patterns
- Key information shared across sessions
Keep the summary concise and focused (approximately 500 tokens)."""
try:
persona_summary = await self.llm_router.route_inference(
task_type="general_reasoning",
prompt=prompt,
max_tokens=500,
temperature=0.7
)
if persona_summary and isinstance(persona_summary, str) and persona_summary.strip():
# Store in database
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("""
INSERT OR REPLACE INTO user_contexts (user_id, persona_summary, updated_at)
VALUES (?, ?, ?)
""", (user_id, persona_summary.strip(), datetime.now().isoformat()))
conn.commit()
conn.close()
logger.info(f"✓ Generated and stored user context for {user_id}")
return persona_summary.strip()
except Exception as e:
logger.error(f"Error generating user context: {e}", exc_info=True)
# Fallback: Return empty if LLM fails
logger.warning(f"Could not generate user context for {user_id} - using empty")
return ""
except Exception as e:
logger.error(f"Error getting user context: {e}", exc_info=True)
return ""
async def generate_interaction_context(self, interaction_id: str, session_id: str,
user_input: str, system_response: str,
user_id: str = "Test_Any") -> str:
"""
STEP 2: Generate Interaction Context (50-token summary)
Called after each response
"""
try:
if not self.llm_router:
return ""
# Use full user input for context generation (not truncated in prompt)
# Only truncate for display in prompt if extremely long
user_input_preview = user_input[:500] if len(user_input) > 500 else user_input
prompt = f"""Summarize this interaction in approximately 50 tokens:
User Input: {user_input_preview}
System Response: {system_response[:500]}
Provide a brief summary capturing the key exchange."""
try:
summary = await self.llm_router.route_inference(
task_type="general_reasoning",
prompt=prompt,
max_tokens=50,
temperature=0.7
)
if summary and isinstance(summary, str) and summary.strip():
# Store in database
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
created_at = datetime.now().isoformat()
cursor.execute("""
INSERT OR REPLACE INTO interaction_contexts
(interaction_id, session_id, user_input, system_response, interaction_summary, created_at)
VALUES (?, ?, ?, ?, ?, ?)
""", (
interaction_id,
session_id,
user_input[:5000], # Increased from 500 to 5000 characters
system_response[:2000], # Increased from 1000 to 2000
summary.strip(),
created_at
))
conn.commit()
conn.close()
# Update cache immediately with new interaction context
# This ensures cache is synchronized with database at the same time
self._update_cache_with_interaction_context(session_id, summary.strip(), created_at)
logger.info(f"✓ Generated interaction context for {interaction_id} and updated cache")
return summary.strip()
except Exception as e:
logger.error(f"Error generating interaction context: {e}", exc_info=True)
# Fallback on LLM failure
return ""
except Exception as e:
logger.error(f"Error in generate_interaction_context: {e}", exc_info=True)
return ""
async def generate_session_context(self, session_id: str, user_id: str = "Test_Any") -> str:
"""
Generate Session Context (100-token summary) at every turn
Uses cached interaction contexts instead of querying database
Updates both database and cache immediately
"""
try:
# Get interaction contexts from cache (no database query)
session_cache_key = f"session_{session_id}"
cached_context = self.session_cache.get(session_cache_key)
if not cached_context:
logger.warning(f"No cached context found for session {session_id}, cannot generate session context")
return ""
interaction_contexts = cached_context.get('interaction_contexts', [])
if not interaction_contexts:
logger.info(f"No interaction contexts available for session {session_id} to summarize")
return ""
# Use cached interaction contexts (from cache, not database)
interaction_summaries = [ic.get('summary', '') for ic in interaction_contexts if ic.get('summary')]
if not interaction_summaries:
logger.info(f"No interaction summaries available for session {session_id}")
return ""
# Generate session summary using LLM (100 tokens)
if self.llm_router:
combined_context = "\n".join(interaction_summaries)
prompt = f"""Summarize this session's interactions in approximately 100 tokens:
Interaction Summaries:
{combined_context}
Create a concise session summary capturing:
- Main topics discussed
- Key outcomes or information shared
- User's focus areas
Keep the summary concise (approximately 100 tokens)."""
try:
session_summary = await self.llm_router.route_inference(
task_type="general_reasoning",
prompt=prompt,
max_tokens=100,
temperature=0.7
)
if session_summary and isinstance(session_summary, str) and session_summary.strip():
# Store in database
created_at = datetime.now().isoformat()
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("""
INSERT OR REPLACE INTO session_contexts
(session_id, user_id, session_summary, created_at)
VALUES (?, ?, ?, ?)
""", (session_id, user_id, session_summary.strip(), created_at))
conn.commit()
conn.close()
# Update cache immediately with new session context
# This ensures cache is synchronized with database at the same time
self._update_cache_with_session_context(session_id, session_summary.strip(), created_at)
logger.info(f"✓ Generated session context for {session_id} and updated cache")
return session_summary.strip()
except Exception as e:
logger.error(f"Error generating session context: {e}", exc_info=True)
# Fallback on LLM failure
return ""
except Exception as e:
logger.error(f"Error in generate_session_context: {e}", exc_info=True)
return ""
async def end_session(self, session_id: str, user_id: str = "Test_Any"):
"""
End session and clear cache
Note: Session context is already generated at every turn, so this just clears cache
"""
try:
# Session context is already generated at every turn (no need to regenerate)
# Clear in-memory cache for this session (session-only key)
session_cache_key = f"session_{session_id}"
if session_cache_key in self.session_cache:
del self.session_cache[session_cache_key]
logger.info(f"✓ Cleared cache for session {session_id}")
except Exception as e:
logger.error(f"Error ending session: {e}", exc_info=True)
def _clear_user_cache_on_change(self, session_id: str, new_user_id: str, old_user_id: str):
"""Clear cache entries when user changes"""
if new_user_id != old_user_id:
# Clear old composite cache keys
old_cache_key = f"{session_id}_{old_user_id}"
if old_cache_key in self.session_cache:
del self.session_cache[old_cache_key]
logger.info(f"Cleared old cache for user {old_user_id} on session {session_id}")
def _optimize_context(self, context: dict, relevance_classification: Optional[Dict] = None) -> dict:
"""
Optimize context for LLM consumption with relevance filtering support
Format: [Session Context] + [User Context (conditional)] + [Interaction Context #N, #N-1, ...]
Args:
context: Base context dictionary
relevance_classification: Optional relevance classification results with dynamic user context
Applies smart pruning before formatting.
"""
# Step 4: Prune context if it exceeds token limits (uses config threshold)
pruned_context = self.prune_context(context)
# Get context mode (fresh or relevant)
session_id = pruned_context.get("session_id")
context_mode = self.get_context_mode(session_id)
interaction_contexts = pruned_context.get("interaction_contexts", [])
session_context = pruned_context.get("session_context", {})
session_summary = session_context.get("summary", "") if isinstance(session_context, dict) else ""
# MODIFIED: Conditional user context inclusion based on mode and relevance
user_context = ""
if context_mode == 'relevant' and relevance_classification:
# Use dynamic relevant summaries from relevance classification
user_context = relevance_classification.get('combined_user_context', '')
if user_context:
logger.info(
f"Using dynamic relevant context: {len(relevance_classification.get('relevant_summaries', []))} "
f"sessions summarized for session {session_id}"
)
elif context_mode == 'relevant' and not relevance_classification:
# Fallback: Use traditional user context if relevance classification unavailable
user_context = pruned_context.get("user_context", "")
logger.debug(f"Relevant mode but no classification, using traditional user context")
# If context_mode == 'fresh', user_context remains empty (no user context)
# Format interaction contexts as requested
formatted_interactions = []
for idx, ic in enumerate(interaction_contexts[:10]): # Last 10 interactions
formatted_interactions.append(f"[Interaction Context #{len(interaction_contexts) - idx}]\n{ic.get('summary', '')}")
# Combine Session Context + (Conditional) User Context + Interaction Contexts
combined_context = ""
if session_summary:
combined_context += f"[Session Context]\n{session_summary}\n\n"
# Include user context only if available and in relevant mode
if user_context:
context_label = "[Relevant User Context]" if context_mode == 'relevant' else "[User Context]"
combined_context += f"{context_label}\n{user_context}\n\n"
if formatted_interactions:
combined_context += "\n\n".join(formatted_interactions)
return {
"session_id": pruned_context.get("session_id"),
"user_id": pruned_context.get("user_id", "Test_Any"),
"user_context": user_context, # Dynamic summaries OR empty
"session_context": session_context,
"interaction_contexts": interaction_contexts,
"combined_context": combined_context,
"context_mode": context_mode, # Include mode for debugging
"relevance_metadata": relevance_classification.get('relevance_scores', {}) if relevance_classification else {},
"preferences": pruned_context.get("preferences", {}),
"active_tasks": pruned_context.get("active_tasks", []),
"last_activity": pruned_context.get("last_activity")
}
def _get_from_memory_cache(self, cache_key: str) -> dict:
"""
Retrieve context from in-memory session cache with expiration check
"""
cached = self.session_cache.get(cache_key)
if not cached:
return None
# Check if it's the new format with expiration
if isinstance(cached, dict) and 'value' in cached:
# New format with TTL
if self._is_cache_expired(cached):
# Remove expired cache entry
del self.session_cache[cache_key]
logger.debug(f"Cache expired for key: {cache_key}")
return None
return cached.get('value')
else:
# Old format (direct value) - return as-is for backward compatibility
return cached
def _is_cache_expired(self, cache_entry: dict) -> bool:
"""
Check if cache entry has expired based on TTL
"""
if not isinstance(cache_entry, dict):
return True
expires = cache_entry.get('expires')
if not expires:
return False # No expiration set, consider valid
return time.time() > expires
def add_context_cache(self, key: str, value: dict, ttl: int = 3600):
"""
Step 2: Implement Context Caching with TTL expiration
Add context to cache with expiration time.
Args:
key: Cache key
value: Value to cache (dict)
ttl: Time to live in seconds (default 3600 = 1 hour)
"""
import time
self.session_cache[key] = {
'value': value,
'expires': time.time() + ttl,
'timestamp': time.time()
}
logger.debug(f"Cached context for key: {key} with TTL: {ttl}s")
def get_token_count(self, text: str) -> int:
"""
Approximate token count for text (4 characters ≈ 1 token)
Args:
text: Text to count tokens for
Returns:
Approximate token count
"""
if not text:
return 0
# Simple approximation: 4 characters per token
return len(text) // 4
def prune_context(self, context: dict, max_tokens: Optional[int] = None) -> dict:
"""
Step 4: Implement Smart Context Pruning with configurable threshold
Prune context to stay within token limit while keeping most recent and relevant content.
Args:
context: Context dictionary to prune
max_tokens: Maximum token count (uses config default if None)
Returns:
Pruned context dictionary
"""
# Use config threshold if not provided
if max_tokens is None:
try:
from .config import get_settings
settings = get_settings()
max_tokens = settings.context_pruning_threshold
logger.debug(f"Using config pruning threshold: {max_tokens} tokens")
except Exception:
max_tokens = 2000 # Fallback to default
logger.warning("Could not load config, using default pruning threshold: 2000")
try:
# Calculate current token count
current_tokens = self._calculate_context_tokens(context)
if current_tokens <= max_tokens:
return context # No pruning needed
logger.info(f"Context token count ({current_tokens}) exceeds limit ({max_tokens}), pruning...")
# Create a copy to avoid modifying original
pruned_context = context.copy()
# Priority: Keep most recent interactions + session context + user context
interaction_contexts = pruned_context.get('interaction_contexts', [])
session_context = pruned_context.get('session_context', {})
user_context = pruned_context.get('user_context', '')
# Keep user context and session context (essential)
essential_tokens = (
self.get_token_count(user_context) +
self.get_token_count(str(session_context))
)
# Calculate how many interaction contexts we can keep
available_tokens = max_tokens - essential_tokens
if available_tokens < 0:
# Essential context itself is too large - summarize user context
if self.get_token_count(user_context) > max_tokens // 2:
pruned_context['user_context'] = user_context[:max_tokens * 2] # Rough cut
logger.warning(f"User context too large, truncated")
return pruned_context
# Keep most recent interactions that fit in token budget
kept_interactions = []
current_size = 0
for interaction in interaction_contexts:
summary = interaction.get('summary', '')
interaction_tokens = self.get_token_count(summary)
if current_size + interaction_tokens <= available_tokens:
kept_interactions.append(interaction)
current_size += interaction_tokens
else:
break # Can't fit any more
pruned_context['interaction_contexts'] = kept_interactions
logger.info(f"Pruned context: kept {len(kept_interactions)}/{len(interaction_contexts)} interactions, "
f"reduced from {current_tokens} to {self._calculate_context_tokens(pruned_context)} tokens")
return pruned_context
except Exception as e:
logger.error(f"Error pruning context: {e}", exc_info=True)
return context # Return original on error
def _calculate_context_tokens(self, context: dict) -> int:
"""Calculate total token count for context"""
total = 0
# Count tokens in each component
user_context = context.get('user_context', '')
total += self.get_token_count(str(user_context))
session_context = context.get('session_context', {})
if isinstance(session_context, dict):
total += self.get_token_count(str(session_context.get('summary', '')))
else:
total += self.get_token_count(str(session_context))
interaction_contexts = context.get('interaction_contexts', [])
for interaction in interaction_contexts:
summary = interaction.get('summary', '')
total += self.get_token_count(str(summary))
return total
async def _retrieve_from_db(self, session_id: str, user_input: str, user_id: str = "Test_Any") -> dict:
"""
Retrieve session context with proper user_id synchronization
Uses transactions to ensure atomic updates of database and cache
"""
conn = None
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Use transaction to ensure atomic updates
cursor.execute("BEGIN TRANSACTION")
# Get session data (SQLite doesn't support FOR UPDATE, but transaction ensures consistency)
cursor.execute("""
SELECT context_data, user_metadata, last_activity, user_id
FROM sessions
WHERE session_id = ?
""", (session_id,))
row = cursor.fetchone()
if row:
context_data = json.loads(row[0]) if row[0] else {}
user_metadata = json.loads(row[1]) if row[1] else {}
last_activity = row[2]
session_user_id = row[3] if len(row) > 3 else user_id
# Check for user_id change and update atomically
user_changed = False
if session_user_id != user_id:
logger.info(f"User change detected: {session_user_id} -> {user_id} for session {session_id}")
user_changed = True
# Update session with new user_id
cursor.execute("""
UPDATE sessions
SET user_id = ?, last_activity = ?
WHERE session_id = ?
""", (user_id, datetime.now().isoformat(), session_id))
# Clear any cached interaction contexts for old user by marking for refresh
try:
cursor.execute("""
UPDATE interaction_contexts
SET needs_refresh = 1
WHERE session_id = ?
""", (session_id,))
except sqlite3.OperationalError:
# Column might not exist yet, will be created by schema update
pass
# Log user change event
try:
cursor.execute("""
INSERT INTO user_change_log (session_id, old_user_id, new_user_id, timestamp)
VALUES (?, ?, ?, ?)
""", (session_id, session_user_id, user_id, datetime.now().isoformat()))
except sqlite3.OperationalError:
# Table might not exist yet, will be created by schema update
pass
# Clear old cache entries when user changes
self._clear_user_cache_on_change(session_id, user_id, session_user_id)
cursor.execute("COMMIT")
# Get interaction contexts with refresh flag check
try:
cursor.execute("""
SELECT interaction_summary, created_at, needs_refresh
FROM interaction_contexts
WHERE session_id = ? AND (needs_refresh IS NULL OR needs_refresh = 0)
ORDER BY created_at DESC
LIMIT 20
""", (session_id,))
except sqlite3.OperationalError:
# Column might not exist yet, fall back to query without needs_refresh
cursor.execute("""
SELECT interaction_summary, created_at
FROM interaction_contexts
WHERE session_id = ?
ORDER BY created_at DESC
LIMIT 20
""", (session_id,))
interaction_contexts = []
for ic_row in cursor.fetchall():
# Handle both query formats (with and without needs_refresh)
if len(ic_row) >= 2:
summary = ic_row[0]
timestamp = ic_row[1]
needs_refresh = ic_row[2] if len(ic_row) > 2 else 0
if summary and not needs_refresh:
interaction_contexts.append({
"summary": summary,
"timestamp": timestamp
})
# Get session context from database
session_context_data = None
try:
cursor.execute("""
SELECT session_summary, created_at
FROM session_contexts
WHERE session_id = ?
ORDER BY created_at DESC
LIMIT 1
""", (session_id,))
sc_row = cursor.fetchone()
if sc_row and sc_row[0]:
session_context_data = {
"summary": sc_row[0],
"timestamp": sc_row[1]
}
except sqlite3.OperationalError:
# Table might not exist yet
pass
context = {
"session_id": session_id,
"user_id": user_id,
"interaction_contexts": interaction_contexts,
"session_context": session_context_data,
"preferences": user_metadata.get("preferences", {}),
"active_tasks": user_metadata.get("active_tasks", []),
"last_activity": last_activity,
"user_context_loaded": False,
"user_changed": user_changed
}
conn.close()
return context
else:
# Create new session with transaction
cursor.execute("""
INSERT INTO sessions (session_id, user_id, created_at, last_activity, context_data, user_metadata)
VALUES (?, ?, ?, ?, ?, ?)
""", (session_id, user_id, datetime.now().isoformat(), datetime.now().isoformat(), "{}", "{}"))
cursor.execute("COMMIT")
conn.close()
return {
"session_id": session_id,
"user_id": user_id,
"interaction_contexts": [],
"session_context": None,
"preferences": {},
"active_tasks": [],
"user_context_loaded": False,
"user_changed": False
}
except sqlite3.Error as e:
logger.error(f"Database transaction error: {e}", exc_info=True)
if conn:
try:
conn.rollback()
except:
pass
conn.close()
# Return safe fallback
return {
"session_id": session_id,
"user_id": user_id,
"interaction_contexts": [],
"session_context": None,
"preferences": {},
"active_tasks": [],
"user_context_loaded": False,
"error": str(e),
"user_changed": False
}
except Exception as e:
logger.error(f"Database retrieval error: {e}", exc_info=True)
if conn:
try:
conn.rollback()
except:
pass
conn.close()
# Return safe fallback
return {
"session_id": session_id,
"user_id": user_id,
"interaction_contexts": [],
"session_context": None,
"preferences": {},
"active_tasks": [],
"user_context_loaded": False,
"error": str(e),
"user_changed": False
}
def _warm_memory_cache(self, cache_key: str, context: dict):
"""
Warm the in-memory cache with retrieved context
Note: Use add_context_cache() instead for TTL support
"""
# Use add_context_cache for consistency with TTL
self.add_context_cache(cache_key, context, ttl=self.cache_config.get("ttl", 3600))
def _update_cache_with_interaction_context(self, session_id: str, interaction_summary: str, created_at: str):
"""
Update cache with new interaction context immediately after database update
This keeps cache synchronized with database without requiring database queries
"""
session_cache_key = f"session_{session_id}"
# Get current cached context if it exists
cached_context = self.session_cache.get(session_cache_key)
if cached_context:
# Add new interaction context to the beginning of the list (most recent first)
interaction_contexts = cached_context.get('interaction_contexts', [])
new_interaction = {
"summary": interaction_summary,
"timestamp": created_at
}
# Insert at beginning and keep only last 20 (matches DB query limit)
interaction_contexts.insert(0, new_interaction)
interaction_contexts = interaction_contexts[:20]
# Update cached context with new interaction contexts
cached_context['interaction_contexts'] = interaction_contexts
self.session_cache[session_cache_key] = cached_context
logger.debug(f"Cache updated with new interaction context for session {session_id} (total: {len(interaction_contexts)})")
else:
# If cache doesn't exist, create new entry
new_context = {
"session_id": session_id,
"interaction_contexts": [{
"summary": interaction_summary,
"timestamp": created_at
}],
"preferences": {},
"active_tasks": [],
"user_context_loaded": False
}
self.session_cache[session_cache_key] = new_context
logger.debug(f"Created new cache entry with interaction context for session {session_id}")
def _update_cache_with_session_context(self, session_id: str, session_summary: str, created_at: str):
"""
Update cache with new session context immediately after database update
This keeps cache synchronized with database without requiring database queries
"""
session_cache_key = f"session_{session_id}"
# Get current cached context if it exists
cached_context = self.session_cache.get(session_cache_key)
if cached_context:
# Update session context in cache
cached_context['session_context'] = {
"summary": session_summary,
"timestamp": created_at
}
self.session_cache[session_cache_key] = cached_context
logger.debug(f"Cache updated with new session context for session {session_id}")
else:
# If cache doesn't exist, create new entry
new_context = {
"session_id": session_id,
"session_context": {
"summary": session_summary,
"timestamp": created_at
},
"interaction_contexts": [],
"preferences": {},
"active_tasks": [],
"user_context_loaded": False
}
self.session_cache[session_cache_key] = new_context
logger.debug(f"Created new cache entry with session context for session {session_id}")
def _update_context(self, context: dict, user_input: str, response: str = None, user_id: str = "Test_Any") -> dict:
"""
Update context with deduplication and idempotency checks
Prevents duplicate context updates using interaction hashes
"""
try:
# Generate unique interaction hash to prevent duplicates
interaction_hash = self._generate_interaction_hash(user_input, context["session_id"], user_id)
# Check if this interaction was already processed
if self._is_duplicate_interaction(interaction_hash):
logger.info(f"Duplicate interaction detected, skipping update: {interaction_hash[:8]}")
return context
# Use transaction for atomic updates
current_time = datetime.now().isoformat()
with self.transaction_manager.transaction(context["session_id"]) as cursor:
# Update session activity (only if last_activity is older to prevent unnecessary updates)
cursor.execute("""
UPDATE sessions
SET last_activity = ?, user_id = ?
WHERE session_id = ? AND (last_activity IS NULL OR last_activity < ?)
""", (current_time, user_id, context["session_id"], current_time))
# Store interaction with duplicate prevention using INSERT OR IGNORE
session_context = {
"preferences": context.get("preferences", {}),
"active_tasks": context.get("active_tasks", [])
}
cursor.execute("""
INSERT OR IGNORE INTO interactions (
interaction_hash,
session_id,
user_input,
context_snapshot,
created_at
) VALUES (?, ?, ?, ?, ?)
""", (
interaction_hash,
context["session_id"],
user_input,
json.dumps(session_context),
current_time
))
# Mark interaction as processed (outside transaction)
self._mark_interaction_processed(interaction_hash)
# Update in-memory context
context["last_interaction"] = user_input
context["last_update"] = current_time
logger.info(f"Context updated for session {context['session_id']} with hash {interaction_hash[:8]}")
return context
except Exception as e:
logger.error(f"Error updating context: {e}", exc_info=True)
return context
def _generate_interaction_hash(self, user_input: str, session_id: str, user_id: str) -> str:
"""Generate unique hash for interaction to prevent duplicates"""
# Use session_id, user_id, and user_input for exact duplicate detection
# Normalize user input by stripping whitespace
normalized_input = user_input.strip()
content = f"{session_id}:{user_id}:{normalized_input}"
return hashlib.sha256(content.encode()).hexdigest()
def _is_duplicate_interaction(self, interaction_hash: str) -> bool:
"""Check if interaction was already processed"""
# Keep a rolling window of recent interaction hashes in memory
if not hasattr(self, '_processed_interactions'):
self._processed_interactions = set()
# Check in-memory cache first
if interaction_hash in self._processed_interactions:
return True
# Also check database for persistent duplicates
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Check if interaction_hash column exists and query for duplicates
cursor.execute("PRAGMA table_info(interactions)")
columns = [row[1] for row in cursor.fetchall()]
if 'interaction_hash' in columns:
cursor.execute("""
SELECT COUNT(*) FROM interactions
WHERE interaction_hash IS NOT NULL AND interaction_hash = ?
""", (interaction_hash,))
count = cursor.fetchone()[0]
conn.close()
return count > 0
else:
conn.close()
return False
except sqlite3.OperationalError:
# Column might not exist yet, only check in-memory
return interaction_hash in self._processed_interactions
def _mark_interaction_processed(self, interaction_hash: str):
"""Mark interaction as processed"""
if not hasattr(self, '_processed_interactions'):
self._processed_interactions = set()
self._processed_interactions.add(interaction_hash)
# Limit memory usage by keeping only last 1000 hashes
if len(self._processed_interactions) > 1000:
# Keep most recent 500 entries (simple truncation)
self._processed_interactions = set(list(self._processed_interactions)[-500:])
async def manage_context_optimized(self, session_id: str, user_input: str, user_id: str = "Test_Any") -> dict:
"""
Efficient context management with transaction optimization
"""
# Use session-only cache key
session_cache_key = f"session_{session_id}"
# Try to get from cache first (no DB access)
cached_context = self._get_from_memory_cache(session_cache_key)
if cached_context and self._is_cache_valid(cached_context):
logger.debug(f"Using cached context for session {session_id}")
return cached_context
# Use transaction for all DB operations
with self.transaction_manager.transaction(session_id) as cursor:
# Atomic session retrieval and update
cursor.execute("""
SELECT s.context_data, s.user_metadata, s.last_activity, s.user_id,
COUNT(ic.interaction_id) as interaction_count
FROM sessions s
LEFT JOIN interaction_contexts ic ON s.session_id = ic.session_id
WHERE s.session_id = ?
GROUP BY s.session_id
""", (session_id,))
row = cursor.fetchone()
if row:
# Parse existing session data
context_data = json.loads(row[0] or '{}')
user_metadata = json.loads(row[1] or '{}')
last_activity = row[2]
stored_user_id = row[3] or user_id
interaction_count = row[4] or 0
# Handle user change atomically
if stored_user_id != user_id:
self._handle_user_change_atomic(cursor, session_id, stored_user_id, user_id)
# Get interaction contexts efficiently
interaction_contexts = self._get_interaction_contexts_atomic(cursor, session_id)
else:
# Create new session atomically
cursor.execute("""
INSERT INTO sessions (session_id, user_id, created_at, last_activity, context_data, user_metadata)
VALUES (?, ?, datetime('now'), datetime('now'), '{}', '{}')
""", (session_id, user_id))
context_data = {}
user_metadata = {}
interaction_contexts = []
interaction_count = 0
# Load user context asynchronously (outside transaction)
user_context = await self._load_user_context_async(user_id)
# Build final context
final_context = {
"session_id": session_id,
"user_id": user_id,
"interaction_contexts": interaction_contexts,
"user_context": user_context,
"preferences": user_metadata.get("preferences", {}),
"active_tasks": user_metadata.get("active_tasks", []),
"interaction_count": interaction_count,
"cache_timestamp": datetime.now().isoformat()
}
# Update cache
self._warm_memory_cache(session_cache_key, final_context)
return self._optimize_context(final_context)
def _handle_user_change_atomic(self, cursor, session_id: str, old_user_id: str, new_user_id: str):
"""Handle user change within transaction"""
logger.info(f"Handling user change in transaction: {old_user_id} -> {new_user_id}")
# Update session
cursor.execute("""
UPDATE sessions
SET user_id = ?, last_activity = datetime('now')
WHERE session_id = ?
""", (new_user_id, session_id))
# Log the change
try:
cursor.execute("""
INSERT INTO user_change_log (session_id, old_user_id, new_user_id, timestamp)
VALUES (?, ?, ?, datetime('now'))
""", (session_id, old_user_id, new_user_id))
except sqlite3.OperationalError:
# Table might not exist yet
pass
# Invalidate related caches
try:
cursor.execute("""
UPDATE interaction_contexts
SET needs_refresh = 1
WHERE session_id = ?
""", (session_id,))
except sqlite3.OperationalError:
# Column might not exist yet
pass
def _get_interaction_contexts_atomic(self, cursor, session_id: str, limit: int = 20):
"""Get interaction contexts within transaction"""
try:
cursor.execute("""
SELECT interaction_summary, created_at, interaction_id
FROM interaction_contexts
WHERE session_id = ? AND (needs_refresh IS NULL OR needs_refresh = 0)
ORDER BY created_at DESC
LIMIT ?
""", (session_id, limit))
except sqlite3.OperationalError:
# Fallback if needs_refresh column doesn't exist
cursor.execute("""
SELECT interaction_summary, created_at, interaction_id
FROM interaction_contexts
WHERE session_id = ?
ORDER BY created_at DESC
LIMIT ?
""", (session_id, limit))
contexts = []
for row in cursor.fetchall():
if row[0]:
contexts.append({
"summary": row[0],
"timestamp": row[1],
"id": row[2] if len(row) > 2 else None
})
return contexts
async def _load_user_context_async(self, user_id: str):
"""Load user context asynchronously to avoid blocking"""
try:
# Check memory cache first
user_cache_key = f"user_{user_id}"
cached = self._get_from_memory_cache(user_cache_key)
if cached:
return cached.get("user_context", "")
# Load from database
return await self.get_user_context(user_id)
except Exception as e:
logger.error(f"Error loading user context: {e}")
return ""
def _is_cache_valid(self, cached_context: dict, max_age_seconds: int = 60) -> bool:
"""Check if cached context is still valid"""
if not cached_context:
return False
cache_timestamp = cached_context.get("cache_timestamp")
if not cache_timestamp:
return False
try:
cache_time = datetime.fromisoformat(cache_timestamp)
age = (datetime.now() - cache_time).total_seconds()
return age < max_age_seconds
except:
return False
def invalidate_session_cache(self, session_id: str):
"""
Invalidate cached context for a session to force fresh retrieval
Only affects cache management - does not change application functionality
"""
session_cache_key = f"session_{session_id}"
if session_cache_key in self.session_cache:
del self.session_cache[session_cache_key]
logger.info(f"Cache invalidated for session {session_id} to ensure fresh context retrieval")
def optimize_database_indexes(self):
"""Create database indexes for better query performance"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Create indexes for frequently queried columns
indexes = [
"CREATE INDEX IF NOT EXISTS idx_sessions_user_id ON sessions(user_id)",
"CREATE INDEX IF NOT EXISTS idx_sessions_last_activity ON sessions(last_activity)",
"CREATE INDEX IF NOT EXISTS idx_interactions_session_id ON interactions(session_id)",
"CREATE INDEX IF NOT EXISTS idx_interaction_contexts_session_id ON interaction_contexts(session_id)",
"CREATE INDEX IF NOT EXISTS idx_interaction_contexts_created_at ON interaction_contexts(created_at)",
"CREATE INDEX IF NOT EXISTS idx_user_change_log_session_id ON user_change_log(session_id)",
"CREATE INDEX IF NOT EXISTS idx_user_contexts_updated_at ON user_contexts(updated_at)"
]
for index in indexes:
try:
cursor.execute(index)
except sqlite3.OperationalError as e:
# Table might not exist yet, skip this index
logger.debug(f"Skipping index creation (table may not exist): {e}")
# Analyze database for query optimization
try:
cursor.execute("ANALYZE")
except sqlite3.OperationalError:
# ANALYZE might not be available in all SQLite versions
pass
conn.commit()
conn.close()
logger.info("✓ Database indexes optimized successfully")
except Exception as e:
logger.error(f"Error optimizing database indexes: {e}", exc_info=True)
def set_context_mode(self, session_id: str, mode: str, user_id: str = "Test_Any"):
"""
Set context mode for session (fresh or relevant)
Args:
session_id: Session identifier
mode: 'fresh' (no user context) or 'relevant' (only relevant context)
user_id: User identifier
Returns:
bool: True if successful, False otherwise
"""
try:
import time
# VALIDATION: Ensure mode is valid
if mode not in ['fresh', 'relevant']:
logger.warning(f"Invalid context mode '{mode}', defaulting to 'fresh'")
mode = 'fresh'
# Get or create cache entry
cache_key = f"session_{session_id}"
cached_context = self._get_from_memory_cache(cache_key)
if not cached_context:
cached_context = {
'session_id': session_id,
'user_id': user_id,
'preferences': {},
'context_mode': mode,
'context_mode_timestamp': time.time()
}
else:
# Update existing context (preserve other data)
cached_context['context_mode'] = mode
cached_context['context_mode_timestamp'] = time.time()
cached_context['user_id'] = user_id # Update user_id if changed
# Update cache with TTL
self.add_context_cache(cache_key, cached_context, ttl=3600)
logger.info(f"Context mode set to '{mode}' for session {session_id} (user: {user_id})")
return True
except Exception as e:
logger.error(f"Error setting context mode: {e}", exc_info=True)
return False # Failure doesn't break existing flow
def get_context_mode(self, session_id: str) -> str:
"""
Get current context mode for session
Args:
session_id: Session identifier
Returns:
str: 'fresh' or 'relevant' (default: 'fresh')
"""
try:
cache_key = f"session_{session_id}"
cached_context = self._get_from_memory_cache(cache_key)
if cached_context:
mode = cached_context.get('context_mode', 'fresh')
# VALIDATION: Ensure mode is still valid
if mode in ['fresh', 'relevant']:
return mode
else:
logger.warning(f"Invalid cached mode '{mode}', resetting to 'fresh'")
cached_context['context_mode'] = 'fresh'
import time
cached_context['context_mode_timestamp'] = time.time()
self.add_context_cache(cache_key, cached_context, ttl=3600)
return 'fresh'
# Default for new sessions
return 'fresh'
except Exception as e:
logger.error(f"Error getting context mode: {e}", exc_info=True)
return 'fresh' # Safe default - no degradation
async def get_all_user_sessions(self, user_id: str) -> List[Dict]:
"""
Fetch all session contexts for a user (for relevance classification)
Performance: Single database query with JOIN
Args:
user_id: User identifier
Returns:
List of session context dictionaries with summaries and interactions
"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Fetch all session contexts for user with interaction summaries
cursor.execute("""
SELECT DISTINCT
sc.session_id,
sc.session_summary,
sc.created_at,
(SELECT GROUP_CONCAT(ic.interaction_summary, ' ||| ')
FROM interaction_contexts ic
WHERE ic.session_id = sc.session_id
ORDER BY ic.created_at DESC
LIMIT 10) as recent_interactions
FROM session_contexts sc
JOIN sessions s ON sc.session_id = s.session_id
WHERE s.user_id = ?
ORDER BY sc.created_at DESC
LIMIT 50
""", (user_id,))
sessions = []
for row in cursor.fetchall():
session_id, session_summary, created_at, interactions_str = row
# Parse interaction summaries
interaction_list = []
if interactions_str:
for summary in interactions_str.split(' ||| '):
if summary.strip():
interaction_list.append({
'summary': summary.strip(),
'timestamp': created_at
})
sessions.append({
'session_id': session_id,
'summary': session_summary or '',
'created_at': created_at,
'interaction_contexts': interaction_list
})
conn.close()
logger.info(f"Fetched {len(sessions)} sessions for user {user_id}")
return sessions
except Exception as e:
logger.error(f"Error fetching user sessions: {e}", exc_info=True)
return [] # Safe fallback - no degradation
def _extract_entities(self, context: dict) -> list:
"""
Extract essential entities from context
"""
# TODO: Implement entity extraction
return []
def _generate_summary(self, context: dict) -> str:
"""
Generate conversation summary
"""
# TODO: Implement summary generation
return ""
def get_or_create_session_context(self, session_id: str, user_id: Optional[str] = None) -> Dict:
"""Enhanced context retrieval with caching"""
import time
# In-memory cache check first
if session_id in self._session_cache:
cache_entry = self._session_cache[session_id]
if time.time() - cache_entry['timestamp'] < 300: # 5 min cache
logger.debug(f"Cache hit for session {session_id}")
return cache_entry['context']
# Batch database queries
conn = None
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Single query for all context data
query = """
SELECT
s.context_data,
s.user_metadata,
s.last_activity,
u.persona_summary,
ic.interaction_summary
FROM sessions s
LEFT JOIN user_contexts u ON s.user_id = u.user_id
LEFT JOIN interaction_contexts ic ON s.session_id = ic.session_id
WHERE s.session_id = ?
ORDER BY ic.created_at DESC
LIMIT 10
"""
cursor.execute(query, (session_id,))
results = cursor.fetchall()
# Process results efficiently
context = self._build_context_from_results(results, session_id, user_id)
# Update cache
self._session_cache[session_id] = {
'context': context,
'timestamp': time.time()
}
return context
except Exception as e:
logger.error(f"Error in get_or_create_session_context: {e}", exc_info=True)
# Return safe fallback
return {
"session_id": session_id,
"user_id": user_id or "Test_Any",
"interaction_contexts": [],
"session_context": None,
"preferences": {},
"active_tasks": [],
"user_context_loaded": False
}
finally:
if conn:
conn.close()
def _build_context_from_results(self, results: list, session_id: str, user_id: Optional[str]) -> Dict:
"""Build context dictionary from batch query results"""
context = {
"session_id": session_id,
"user_id": user_id or "Test_Any",
"interaction_contexts": [],
"session_context": None,
"user_context": "",
"preferences": {},
"active_tasks": [],
"user_context_loaded": False
}
if not results:
return context
# Process first row for session data
first_row = results[0]
if first_row[0]: # context_data
try:
session_data = json.loads(first_row[0])
context["preferences"] = session_data.get("preferences", {})
context["active_tasks"] = session_data.get("active_tasks", [])
except:
pass
if first_row[1]: # user_metadata
try:
user_metadata = json.loads(first_row[1])
context["preferences"].update(user_metadata.get("preferences", {}))
except:
pass
context["last_activity"] = first_row[2] # last_activity
if first_row[3]: # persona_summary
context["user_context"] = first_row[3]
context["user_context_loaded"] = True
# Process interaction contexts
seen_interactions = set()
for row in results:
if row[4]: # interaction_summary
# Deduplicate interactions
if row[4] not in seen_interactions:
seen_interactions.add(row[4])
context["interaction_contexts"].append({
"summary": row[4],
"timestamp": None # Could extract from row if available
})
return context
|