|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
from src.config import settings, Settings, CacheDirectoryManager |
|
|
except ImportError: |
|
|
|
|
|
import os |
|
|
from pydantic_settings import BaseSettings |
|
|
|
|
|
class Settings(BaseSettings): |
|
|
hf_token: str = os.getenv("HF_TOKEN", "") |
|
|
hf_cache_dir: str = os.getenv("HF_HOME", "/tmp/huggingface") |
|
|
default_model: str = "mistralai/Mistral-7B-Instruct-v0.2" |
|
|
embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2" |
|
|
classification_model: str = "cardiffnlp/twitter-roberta-base-emotion" |
|
|
max_workers: int = int(os.getenv("MAX_WORKERS", "4")) |
|
|
cache_ttl: int = int(os.getenv("CACHE_TTL", "3600")) |
|
|
_default_db_path = "/tmp/sessions.db" if os.path.exists("/.dockerenv") or os.path.exists("/tmp") else "sessions.db" |
|
|
db_path: str = os.getenv("DB_PATH", _default_db_path) |
|
|
_default_faiss_path = "/tmp/embeddings.faiss" if os.path.exists("/.dockerenv") or os.path.exists("/tmp") else "embeddings.faiss" |
|
|
faiss_index_path: str = os.getenv("FAISS_INDEX_PATH", _default_faiss_path) |
|
|
session_timeout: int = int(os.getenv("SESSION_TIMEOUT", "3600")) |
|
|
max_session_size_mb: int = int(os.getenv("MAX_SESSION_SIZE_MB", "10")) |
|
|
mobile_max_tokens: int = int(os.getenv("MOBILE_MAX_TOKENS", "800")) |
|
|
mobile_timeout: int = int(os.getenv("MOBILE_TIMEOUT", "15000")) |
|
|
gradio_port: int = int(os.getenv("GRADIO_PORT", "7860")) |
|
|
gradio_host: str = os.getenv("GRADIO_HOST", "0.0.0.0") |
|
|
log_level: str = os.getenv("LOG_LEVEL", "INFO") |
|
|
log_format: str = os.getenv("LOG_FORMAT", "json") |
|
|
|
|
|
class Config: |
|
|
env_file = ".env" |
|
|
|
|
|
settings = Settings() |
|
|
|
|
|
|
|
|
CONTEXT_CONFIG = { |
|
|
'max_context_tokens': int(os.getenv("MAX_CONTEXT_TOKENS", "4000")), |
|
|
'cache_ttl_seconds': int(os.getenv("CACHE_TTL_SECONDS", "300")), |
|
|
'max_cache_size': int(os.getenv("MAX_CACHE_SIZE", "100")), |
|
|
'parallel_processing': os.getenv("PARALLEL_PROCESSING", "True").lower() == "true", |
|
|
'context_decay_factor': float(os.getenv("CONTEXT_DECAY_FACTOR", "0.8")), |
|
|
'max_interactions_to_keep': int(os.getenv("MAX_INTERACTIONS_TO_KEEP", "10")), |
|
|
'enable_metrics': os.getenv("ENABLE_METRICS", "True").lower() == "true", |
|
|
'compression_enabled': os.getenv("COMPRESSION_ENABLED", "True").lower() == "true", |
|
|
'summarization_threshold': int(os.getenv("SUMMARIZATION_THRESHOLD", "2000")) |
|
|
} |
|
|
|
|
|
|
|
|
CONTEXT_MODELS = { |
|
|
'summarization': os.getenv("CONTEXT_SUMMARIZATION_MODEL", "Qwen/Qwen2.5-7B-Instruct"), |
|
|
'intent': os.getenv("CONTEXT_INTENT_MODEL", "Qwen/Qwen2.5-7B-Instruct"), |
|
|
'synthesis': os.getenv("CONTEXT_SYNTHESIS_MODEL", "Qwen/Qwen2.5-72B-Instruct") |
|
|
} |
|
|
|
|
|
|