HonestAI / src /agents /intent_agent.py
JatsTheAIGen's picture
Initial commit: Research AI Assistant API
8f4d405
"""
Intent Recognition Agent
Specialized in understanding user goals using Chain of Thought reasoning
"""
import logging
from typing import Dict, Any, List
import json
logger = logging.getLogger(__name__)
class IntentRecognitionAgent:
def __init__(self, llm_router=None):
self.llm_router = llm_router
self.agent_id = "INTENT_REC_001"
self.specialization = "Multi-class intent classification with context awareness"
# Intent categories for classification
self.intent_categories = [
"information_request", # Asking for facts, explanations
"task_execution", # Requesting actions, automation
"creative_generation", # Content creation, writing
"analysis_research", # Data analysis, research
"casual_conversation", # Chat, social interaction
"troubleshooting", # Problem solving, debugging
"education_learning", # Learning, tutorials
"technical_support" # Technical help, guidance
]
async def execute(self, user_input: str, context: Dict[str, Any] = None, **kwargs) -> Dict[str, Any]:
"""
Execute intent recognition with Chain of Thought reasoning
"""
try:
logger.info(f"{self.agent_id} processing user input: {user_input[:100]}...")
# Use LLM for sophisticated intent recognition if available
if self.llm_router:
intent_result = await self._llm_based_intent_recognition(user_input, context)
else:
# Fallback to rule-based classification
intent_result = await self._rule_based_intent_recognition(user_input, context)
# Add agent metadata
intent_result.update({
"agent_id": self.agent_id,
"processing_time": intent_result.get("processing_time", 0),
"confidence_calibration": self._calibrate_confidence(intent_result)
})
logger.info(f"{self.agent_id} completed with intent: {intent_result['primary_intent']}")
return intent_result
except Exception as e:
logger.error(f"{self.agent_id} error: {str(e)}")
return self._get_fallback_intent(user_input, context)
async def _llm_based_intent_recognition(self, user_input: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Use LLM for sophisticated intent classification with Chain of Thought"""
try:
cot_prompt = self._build_chain_of_thought_prompt(user_input, context)
logger.info(f"{self.agent_id} calling LLM for intent recognition")
llm_response = await self.llm_router.route_inference(
task_type="intent_classification",
prompt=cot_prompt,
max_tokens=1000,
temperature=0.3
)
if llm_response and isinstance(llm_response, str) and len(llm_response.strip()) > 0:
# Parse LLM response
parsed_result = self._parse_llm_intent_response(llm_response)
parsed_result["processing_time"] = 0.8
parsed_result["method"] = "llm_enhanced"
return parsed_result
except Exception as e:
logger.error(f"{self.agent_id} LLM intent recognition failed: {e}")
# Fallback to rule-based classification if LLM fails
logger.info(f"{self.agent_id} falling back to rule-based classification")
return await self._rule_based_intent_recognition(user_input, context)
async def _rule_based_intent_recognition(self, user_input: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Rule-based fallback intent classification"""
primary_intent, confidence = self._analyze_intent_patterns(user_input)
secondary_intents = self._get_secondary_intents(user_input, primary_intent)
return {
"primary_intent": primary_intent,
"secondary_intents": secondary_intents,
"confidence_scores": {primary_intent: confidence},
"reasoning_chain": ["Rule-based pattern matching applied"],
"context_tags": [],
"processing_time": 0.02
}
def _build_chain_of_thought_prompt(self, user_input: str, context: Dict[str, Any]) -> str:
"""Build Chain of Thought prompt for intent recognition"""
# Extract context information from Context Manager structure
# Session context, user context, and interaction contexts are all from cache
context_info = ""
if context:
# Use combined_context if available (pre-formatted by Context Manager, includes session context)
combined_context = context.get('combined_context', '')
if combined_context:
# Use the pre-formatted context from Context Manager (includes session context)
context_info = f"\n\nAvailable Context:\n{combined_context[:1000]}..." # Truncate if too long
else:
# Fallback: Build from session_context, user_context, and interaction_contexts (all from cache)
session_context = context.get('session_context', {})
session_summary = session_context.get('summary', '') if isinstance(session_context, dict) else ""
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')
context_parts = []
if session_summary:
context_parts.append(f"Session Context: {session_summary[:300]}...")
if user_context:
context_parts.append(f"User Context: {user_context[:300]}...")
if interaction_contexts:
# Show last 2 interaction summaries for context
recent_contexts = interaction_contexts[-2:]
context_parts.append("Recent Interactions:")
for idx, ic in enumerate(recent_contexts, 1):
summary = ic.get('summary', '')
if summary:
context_parts.append(f" {idx}. {summary}")
if context_parts:
context_info = "\n\nAvailable Context:\n" + "\n".join(context_parts)
if not context_info:
context_info = "\n\nAvailable Context: No previous context available (first interaction in session)."
return f"""
Analyze the user's intent step by step:
User Input: "{user_input}"
{context_info}
Step 1: Identify key entities, actions, and questions in the input
Step 2: Map to intent categories: {', '.join(self.intent_categories)}
Step 3: Consider the conversation flow and user's likely goals (if context available)
Step 4: Assign confidence scores (0.0-1.0) for each relevant intent
Step 5: Provide reasoning for the classification
Respond with JSON format containing primary_intent, secondary_intents, confidence_scores, and reasoning_chain.
"""
def _analyze_intent_patterns(self, user_input: str) -> tuple:
"""Analyze user input patterns to determine intent"""
user_input_lower = user_input.lower()
# Pattern matching for different intents
patterns = {
"information_request": [
"what is", "how to", "explain", "tell me about", "what are",
"define", "meaning of", "information about"
],
"task_execution": [
"do this", "make a", "create", "build", "generate", "automate",
"set up", "configure", "execute", "run"
],
"creative_generation": [
"write a", "compose", "create content", "make a story",
"generate poem", "creative", "artistic"
],
"analysis_research": [
"analyze", "research", "compare", "study", "investigate",
"data analysis", "find patterns", "statistics"
],
"troubleshooting": [
"error", "problem", "fix", "debug", "not working",
"help with", "issue", "broken"
],
"technical_support": [
"how do i", "help me", "guide me", "tutorial", "step by step"
]
}
# Find matching patterns
for intent, pattern_list in patterns.items():
for pattern in pattern_list:
if pattern in user_input_lower:
confidence = min(0.9, 0.6 + (len(pattern) * 0.1)) # Basic confidence calculation
return intent, confidence
# Default to casual conversation
return "casual_conversation", 0.7
def _get_secondary_intents(self, user_input: str, primary_intent: str) -> List[str]:
"""Get secondary intents based on input complexity"""
user_input_lower = user_input.lower()
secondary = []
# Add secondary intents based on content
if "research" in user_input_lower and primary_intent != "analysis_research":
secondary.append("analysis_research")
if "help" in user_input_lower and primary_intent != "technical_support":
secondary.append("technical_support")
return secondary[:2] # Limit to 2 secondary intents
def _extract_context_tags(self, user_input: str, context: Dict[str, Any]) -> List[str]:
"""Extract relevant context tags from user input"""
tags = []
user_input_lower = user_input.lower()
# Simple tag extraction
if "research" in user_input_lower:
tags.append("research")
if "technical" in user_input_lower or "code" in user_input_lower:
tags.append("technical")
if "academic" in user_input_lower or "study" in user_input_lower:
tags.append("academic")
if "quick" in user_input_lower or "simple" in user_input_lower:
tags.append("quick_request")
return tags
def _calibrate_confidence(self, intent_result: Dict[str, Any]) -> Dict[str, Any]:
"""Calibrate confidence scores based on various factors"""
primary_intent = intent_result["primary_intent"]
confidence = intent_result["confidence_scores"][primary_intent]
calibration_factors = {
"input_length_impact": min(1.0, len(intent_result.get('user_input', '')) / 100),
"context_enhancement": 0.1 if intent_result.get('context_tags') else 0.0,
"reasoning_depth_bonus": 0.05 if len(intent_result.get('reasoning_chain', [])) > 2 else 0.0
}
calibrated_confidence = min(0.95, confidence + sum(calibration_factors.values()))
return {
"original_confidence": confidence,
"calibrated_confidence": calibrated_confidence,
"calibration_factors": calibration_factors
}
def _parse_llm_intent_response(self, response: str) -> Dict[str, Any]:
"""Parse LLM response for intent classification"""
try:
import json
import re
# Try to extract JSON from response
json_match = re.search(r'\{.*\}', response, re.DOTALL)
if json_match:
parsed = json.loads(json_match.group())
return parsed
except json.JSONDecodeError:
logger.warning(f"{self.agent_id} Failed to parse LLM intent JSON")
# Fallback parsing - extract intent from text
response_lower = response.lower()
primary_intent = "casual_conversation"
confidence = 0.7
# Simple pattern matching for intent extraction
if any(word in response_lower for word in ['question', 'ask', 'what', 'how', 'why']):
primary_intent = "information_request"
confidence = 0.8
elif any(word in response_lower for word in ['task', 'action', 'do', 'help', 'assist']):
primary_intent = "task_execution"
confidence = 0.8
elif any(word in response_lower for word in ['create', 'generate', 'write', 'make']):
primary_intent = "creative_generation"
confidence = 0.8
return {
"primary_intent": primary_intent,
"secondary_intents": [],
"confidence_scores": {primary_intent: confidence},
"reasoning_chain": [f"LLM response parsed: {response[:100]}..."],
"context_tags": ["llm_parsed"],
"method": "llm_parsed"
}
def _get_fallback_intent(self, user_input: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Provide fallback intent when processing fails"""
return {
"primary_intent": "casual_conversation",
"secondary_intents": [],
"confidence_scores": {"casual_conversation": 0.5},
"reasoning_chain": ["Fallback: Default to casual conversation"],
"context_tags": ["fallback"],
"processing_time": 0.01,
"agent_id": self.agent_id,
"error_handled": True
}
# Factory function for easy instantiation
def create_intent_agent(llm_router=None):
return IntentRecognitionAgent(llm_router)