Fix: GPU tensor placement and Docker deployment configuration
Browse filesCRITICAL FIXES:
- Fixed tensor device placement errors (meta device issues)
- Added explicit device placement for non-quantized models
- Updated Dockerfile with cache directory setup
- Created comprehensive deployment configuration guide
Changes:
- src/local_model_loader.py:
- Use device_map='auto' only with quantization (prevents meta device errors)
- Explicit .to(device) placement for non-quantized models
- Better logging for model loading status
- Dockerfile:
- Create cache directories with proper permissions
- Set HF_HOME and TRANSFORMERS_CACHE environment variables
- Ensure /tmp directories are writable
- DEPLOYMENT_CONFIG_GUIDE.md (NEW):
- Comprehensive guide for all deployment issues
- Cache directory permission fixes
- HF_TOKEN configuration
- GPU tensor placement solutions
- Troubleshooting steps
- Verification checklist
Fixes:
- Tensor on device meta errors → Explicit device placement
- Permission denied /cache errors → Dockerfile creates /tmp/cache
- User ID issues → Proper directory permissions in Dockerfile
- Gated repository access → HF_TOKEN configuration guide
Ready for production deployment.
- DEPLOYMENT_CONFIG_GUIDE.md +214 -0
- Dockerfile +10 -0
- src/local_model_loader.py +12 -1
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Deployment Configuration Guide
|
| 2 |
+
|
| 3 |
+
## Critical Issues and Solutions
|
| 4 |
+
|
| 5 |
+
### 1. Cache Directory Permissions
|
| 6 |
+
|
| 7 |
+
**Problem**: `PermissionError: [Errno 13] Permission denied: '/.cache'`
|
| 8 |
+
|
| 9 |
+
**Solution**: The code now automatically detects Docker and uses `/tmp/huggingface_cache`. However, ensure the Dockerfile sets proper permissions.
|
| 10 |
+
|
| 11 |
+
**Dockerfile Fix**:
|
| 12 |
+
```dockerfile
|
| 13 |
+
# Create cache directory with proper permissions
|
| 14 |
+
RUN mkdir -p /tmp/huggingface_cache && chmod 777 /tmp/huggingface_cache
|
| 15 |
+
ENV HF_HOME=/tmp/huggingface_cache
|
| 16 |
+
ENV TRANSFORMERS_CACHE=/tmp/huggingface_cache
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
### 2. User ID Issues
|
| 20 |
+
|
| 21 |
+
**Problem**: `KeyError: 'getpwuid(): uid not found: 1000'`
|
| 22 |
+
|
| 23 |
+
**Solution**: Run container with proper user or ensure user exists in container.
|
| 24 |
+
|
| 25 |
+
**Option A - Use root (simplest for HF Spaces)**:
|
| 26 |
+
```dockerfile
|
| 27 |
+
# Already running as root in HF Spaces - this is fine
|
| 28 |
+
# Just ensure cache directories are writable
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
**Option B - Create user in Dockerfile**:
|
| 32 |
+
```dockerfile
|
| 33 |
+
RUN useradd -m -u 1000 -s /bin/bash appuser && \
|
| 34 |
+
mkdir -p /tmp/huggingface_cache && \
|
| 35 |
+
chown -R appuser:appuser /tmp/huggingface_cache /app
|
| 36 |
+
USER appuser
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
**For Hugging Face Spaces**: Spaces typically run as root, so Option A is fine.
|
| 40 |
+
|
| 41 |
+
### 3. HuggingFace Token Configuration
|
| 42 |
+
|
| 43 |
+
**Problem**: Gated repository access errors
|
| 44 |
+
|
| 45 |
+
**Solution**: Set HF_TOKEN in Hugging Face Spaces secrets.
|
| 46 |
+
|
| 47 |
+
**Steps**:
|
| 48 |
+
1. Go to your Space → Settings → Repository secrets
|
| 49 |
+
2. Add `HF_TOKEN` with your Hugging Face access token
|
| 50 |
+
3. Token should have read access to gated models
|
| 51 |
+
|
| 52 |
+
**Verify Token**:
|
| 53 |
+
```bash
|
| 54 |
+
# Test token access
|
| 55 |
+
curl -H "Authorization: Bearer YOUR_TOKEN" https://huggingface.co/api/models/Qwen/Qwen2.5-7B-Instruct
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
### 4. GPU Tensor Device Placement
|
| 59 |
+
|
| 60 |
+
**Problem**: `Tensor on device cuda:0 is not on the expected device meta!`
|
| 61 |
+
|
| 62 |
+
**Solution**: Use explicit device placement instead of `device_map="auto"` for non-quantized models.
|
| 63 |
+
|
| 64 |
+
**Code Fix**: Already implemented in `src/local_model_loader.py` - uses `device_map="auto"` only with quantization, explicit placement otherwise.
|
| 65 |
+
|
| 66 |
+
### 5. Model Selection for Testing
|
| 67 |
+
|
| 68 |
+
**Current Models**:
|
| 69 |
+
- Primary: `Qwen/Qwen2.5-7B-Instruct` (gated - requires access)
|
| 70 |
+
- Fallback: `microsoft/Phi-3-mini-4k-instruct` (non-gated, verified)
|
| 71 |
+
|
| 72 |
+
**For Testing Without Gated Models**:
|
| 73 |
+
Update `src/models_config.py` to use non-gated models:
|
| 74 |
+
```python
|
| 75 |
+
"reasoning_primary": {
|
| 76 |
+
"model_id": "microsoft/Phi-3-mini-4k-instruct", # Non-gated
|
| 77 |
+
...
|
| 78 |
+
}
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
## Recommended Dockerfile Updates
|
| 82 |
+
|
| 83 |
+
```dockerfile
|
| 84 |
+
FROM python:3.10-slim
|
| 85 |
+
|
| 86 |
+
WORKDIR /app
|
| 87 |
+
|
| 88 |
+
# Install system dependencies
|
| 89 |
+
RUN apt-get update && apt-get install -y \
|
| 90 |
+
gcc \
|
| 91 |
+
g++ \
|
| 92 |
+
cmake \
|
| 93 |
+
libopenblas-dev \
|
| 94 |
+
libomp-dev \
|
| 95 |
+
curl \
|
| 96 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 97 |
+
|
| 98 |
+
# Create cache directories with proper permissions
|
| 99 |
+
RUN mkdir -p /tmp/huggingface_cache && \
|
| 100 |
+
chmod 777 /tmp/huggingface_cache && \
|
| 101 |
+
mkdir -p /tmp/logs && \
|
| 102 |
+
chmod 777 /tmp/logs
|
| 103 |
+
|
| 104 |
+
# Copy requirements file
|
| 105 |
+
COPY requirements.txt .
|
| 106 |
+
|
| 107 |
+
# Install Python dependencies
|
| 108 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 109 |
+
pip install --no-cache-dir -r requirements.txt
|
| 110 |
+
|
| 111 |
+
# Copy application code
|
| 112 |
+
COPY . .
|
| 113 |
+
|
| 114 |
+
# Set environment variables
|
| 115 |
+
ENV PYTHONUNBUFFERED=1
|
| 116 |
+
ENV PORT=7860
|
| 117 |
+
ENV OMP_NUM_THREADS=4
|
| 118 |
+
ENV MKL_NUM_THREADS=4
|
| 119 |
+
ENV DB_PATH=/tmp/sessions.db
|
| 120 |
+
ENV FAISS_INDEX_PATH=/tmp/embeddings.faiss
|
| 121 |
+
ENV LOG_DIR=/tmp/logs
|
| 122 |
+
ENV HF_HOME=/tmp/huggingface_cache
|
| 123 |
+
ENV TRANSFORMERS_CACHE=/tmp/huggingface_cache
|
| 124 |
+
ENV RATE_LIMIT_ENABLED=true
|
| 125 |
+
|
| 126 |
+
# Expose port
|
| 127 |
+
EXPOSE 7860
|
| 128 |
+
|
| 129 |
+
# Health check
|
| 130 |
+
HEALTHCHECK --interval=30s --timeout=30s --start-period=120s --retries=3 \
|
| 131 |
+
CMD curl -f http://localhost:7860/api/health || exit 1
|
| 132 |
+
|
| 133 |
+
# Run with Gunicorn
|
| 134 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:7860", "--workers", "4", "--threads", "2", "--timeout", "120", "--access-logfile", "-", "--error-logfile", "-", "--log-level", "info", "flask_api_standalone:app"]
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
## Hugging Face Spaces Configuration
|
| 138 |
+
|
| 139 |
+
### Required Secrets:
|
| 140 |
+
1. `HF_TOKEN` - Your Hugging Face access token (for gated models)
|
| 141 |
+
|
| 142 |
+
### Environment Variables (Optional):
|
| 143 |
+
- `HF_HOME` - Will auto-detect to `/tmp/huggingface_cache` in Docker
|
| 144 |
+
- `TRANSFORMERS_CACHE` - Will auto-detect to `/tmp/huggingface_cache` in Docker
|
| 145 |
+
|
| 146 |
+
### Hardware Requirements:
|
| 147 |
+
- GPU: NVIDIA T4 (16GB VRAM) - ✅ Detected in logs
|
| 148 |
+
- Memory: At least 8GB RAM
|
| 149 |
+
- Disk: 20GB+ for model cache
|
| 150 |
+
|
| 151 |
+
## Verification Steps
|
| 152 |
+
|
| 153 |
+
1. **Check Cache Directory**:
|
| 154 |
+
```bash
|
| 155 |
+
ls -la /tmp/huggingface_cache
|
| 156 |
+
# Should show writable directory
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
2. **Check HF Token**:
|
| 160 |
+
```python
|
| 161 |
+
import os
|
| 162 |
+
print("HF_TOKEN set:", bool(os.getenv("HF_TOKEN")))
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
3. **Check GPU**:
|
| 166 |
+
```python
|
| 167 |
+
import torch
|
| 168 |
+
print("CUDA available:", torch.cuda.is_available())
|
| 169 |
+
print("GPU:", torch.cuda.get_device_name(0) if torch.cuda.is_available() else "None")
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
4. **Test Model Loading**:
|
| 173 |
+
- Check logs for: `✓ Cache directory verified: /tmp/huggingface_cache`
|
| 174 |
+
- Check logs for: `✓ HF_TOKEN authenticated for gated model access` (if token set)
|
| 175 |
+
- Check logs for: `✓ Model loaded successfully`
|
| 176 |
+
|
| 177 |
+
## Troubleshooting
|
| 178 |
+
|
| 179 |
+
### Issue: Still getting permission errors
|
| 180 |
+
**Fix**: Ensure Dockerfile creates cache directory with 777 permissions
|
| 181 |
+
|
| 182 |
+
### Issue: Gated repository errors persist
|
| 183 |
+
**Fix**:
|
| 184 |
+
1. Verify HF_TOKEN is set in Spaces secrets
|
| 185 |
+
2. Visit model page and request access
|
| 186 |
+
3. Wait for approval (usually instant)
|
| 187 |
+
4. Use fallback model (Phi-3-mini) until access granted
|
| 188 |
+
|
| 189 |
+
### Issue: Tensor device errors
|
| 190 |
+
**Fix**: Code now handles this - if quantization fails, loads without quantization and uses explicit device placement
|
| 191 |
+
|
| 192 |
+
### Issue: Model too large for GPU
|
| 193 |
+
**Fix**:
|
| 194 |
+
- Code automatically falls back to no quantization if bitsandbytes fails
|
| 195 |
+
- Consider using smaller model (Phi-3-mini) for testing
|
| 196 |
+
- Check GPU memory: `nvidia-smi`
|
| 197 |
+
|
| 198 |
+
## Quick Start Checklist
|
| 199 |
+
|
| 200 |
+
- [ ] HF_TOKEN set in Spaces secrets
|
| 201 |
+
- [ ] Dockerfile creates cache directory with proper permissions
|
| 202 |
+
- [ ] GPU detected (check logs)
|
| 203 |
+
- [ ] Cache directory writable (check logs)
|
| 204 |
+
- [ ] Model access granted (or using non-gated fallback)
|
| 205 |
+
- [ ] No tensor device errors (check logs)
|
| 206 |
+
|
| 207 |
+
## Next Steps
|
| 208 |
+
|
| 209 |
+
1. Update Dockerfile with cache directory creation
|
| 210 |
+
2. Set HF_TOKEN in Spaces secrets
|
| 211 |
+
3. Request access to gated models (Qwen)
|
| 212 |
+
4. Test with fallback model first (Phi-3-mini)
|
| 213 |
+
5. Monitor logs for successful model loading
|
| 214 |
+
|
|
@@ -16,6 +16,13 @@ RUN apt-get update && apt-get install -y \
|
|
| 16 |
curl \
|
| 17 |
&& rm -rf /var/lib/apt/lists/*
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# Copy requirements file first (for better caching)
|
| 20 |
COPY requirements.txt .
|
| 21 |
|
|
@@ -39,6 +46,9 @@ ENV DB_PATH=/tmp/sessions.db
|
|
| 39 |
ENV FAISS_INDEX_PATH=/tmp/embeddings.faiss
|
| 40 |
ENV LOG_DIR=/tmp/logs
|
| 41 |
ENV RATE_LIMIT_ENABLED=true
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Health check
|
| 44 |
HEALTHCHECK --interval=30s --timeout=30s --start-period=120s --retries=3 \
|
|
|
|
| 16 |
curl \
|
| 17 |
&& rm -rf /var/lib/apt/lists/*
|
| 18 |
|
| 19 |
+
# Create cache directories with proper permissions
|
| 20 |
+
# Hugging Face Spaces runs as root, so we can use /tmp without permission issues
|
| 21 |
+
RUN mkdir -p /tmp/huggingface_cache && \
|
| 22 |
+
chmod 777 /tmp/huggingface_cache && \
|
| 23 |
+
mkdir -p /tmp/logs && \
|
| 24 |
+
chmod 777 /tmp/logs
|
| 25 |
+
|
| 26 |
# Copy requirements file first (for better caching)
|
| 27 |
COPY requirements.txt .
|
| 28 |
|
|
|
|
| 46 |
ENV FAISS_INDEX_PATH=/tmp/embeddings.faiss
|
| 47 |
ENV LOG_DIR=/tmp/logs
|
| 48 |
ENV RATE_LIMIT_ENABLED=true
|
| 49 |
+
# Cache directories - will be used by transformers and huggingface_hub
|
| 50 |
+
ENV HF_HOME=/tmp/huggingface_cache
|
| 51 |
+
ENV TRANSFORMERS_CACHE=/tmp/huggingface_cache
|
| 52 |
|
| 53 |
# Health check
|
| 54 |
HEALTHCHECK --interval=30s --timeout=30s --start-period=120s --retries=3 \
|
|
@@ -172,10 +172,13 @@ class LocalModelLoader:
|
|
| 172 |
}
|
| 173 |
|
| 174 |
if self.device == "cuda":
|
|
|
|
|
|
|
| 175 |
load_kwargs.update({
|
| 176 |
-
"device_map": "auto", # Automatically uses GPU
|
| 177 |
"torch_dtype": torch.float16, # Use FP16 for memory efficiency
|
| 178 |
})
|
|
|
|
|
|
|
| 179 |
|
| 180 |
# Try loading with quantization first
|
| 181 |
model = None
|
|
@@ -188,6 +191,9 @@ class LocalModelLoader:
|
|
| 188 |
else:
|
| 189 |
load_kwargs["quantization_config"] = quantization_config
|
| 190 |
|
|
|
|
|
|
|
|
|
|
| 191 |
model = AutoModelForCausalLM.from_pretrained(
|
| 192 |
base_model_id,
|
| 193 |
**load_kwargs
|
|
@@ -212,10 +218,15 @@ class LocalModelLoader:
|
|
| 212 |
if model is None:
|
| 213 |
try:
|
| 214 |
if self.device == "cuda":
|
|
|
|
|
|
|
| 215 |
model = AutoModelForCausalLM.from_pretrained(
|
| 216 |
base_model_id,
|
| 217 |
**load_kwargs
|
| 218 |
)
|
|
|
|
|
|
|
|
|
|
| 219 |
else:
|
| 220 |
load_kwargs.update({
|
| 221 |
"torch_dtype": torch.float32,
|
|
|
|
| 172 |
}
|
| 173 |
|
| 174 |
if self.device == "cuda":
|
| 175 |
+
# Use explicit device placement to avoid meta device issues
|
| 176 |
+
# device_map="auto" works well with quantization, but can cause issues without it
|
| 177 |
load_kwargs.update({
|
|
|
|
| 178 |
"torch_dtype": torch.float16, # Use FP16 for memory efficiency
|
| 179 |
})
|
| 180 |
+
# Only use device_map="auto" with quantization, otherwise use explicit placement
|
| 181 |
+
# This prevents "Tensor on device meta" errors
|
| 182 |
|
| 183 |
# Try loading with quantization first
|
| 184 |
model = None
|
|
|
|
| 191 |
else:
|
| 192 |
load_kwargs["quantization_config"] = quantization_config
|
| 193 |
|
| 194 |
+
# With quantization, device_map="auto" works correctly
|
| 195 |
+
load_kwargs["device_map"] = "auto"
|
| 196 |
+
|
| 197 |
model = AutoModelForCausalLM.from_pretrained(
|
| 198 |
base_model_id,
|
| 199 |
**load_kwargs
|
|
|
|
| 218 |
if model is None:
|
| 219 |
try:
|
| 220 |
if self.device == "cuda":
|
| 221 |
+
# Without quantization, use explicit device placement to avoid meta device issues
|
| 222 |
+
# Don't use device_map="auto" here - it can cause tensor placement errors
|
| 223 |
model = AutoModelForCausalLM.from_pretrained(
|
| 224 |
base_model_id,
|
| 225 |
**load_kwargs
|
| 226 |
)
|
| 227 |
+
# Explicitly move to GPU after loading
|
| 228 |
+
model = model.to(self.device)
|
| 229 |
+
logger.info(f"✓ Model loaded without quantization on {self.device}")
|
| 230 |
else:
|
| 231 |
load_kwargs.update({
|
| 232 |
"torch_dtype": torch.float32,
|