Fix: Cache directory permissions and gated repository handling
Browse filesCRITICAL FIXES:
- Fixed cache directory permission errors in Docker containers
- Added HF_TOKEN authentication for gated repository access
- Added non-gated fallback model (Mistral-7B-Instruct-v0.2)
- Improved Docker detection to prefer /tmp over ~/.cache
Changes:
- src/local_model_loader.py:
- Pass cache_dir to all from_pretrained calls
- Set HF_HOME and TRANSFORMERS_CACHE environment variables
- Authenticate with HF_TOKEN for gated repositories
- Use cache_dir from settings config
- src/config.py:
- Improved Docker detection for cache directory selection
- Prefer /tmp in Docker containers to avoid permission issues
- src/models_config.py:
- Added mistralai/Mistral-7B-Instruct-v0.2 as fallback model
- All text tasks now have non-gated fallback option
Fixes:
- PermissionError: [Errno 13] Permission denied: '/.cache'
- Gated repository access errors with proper fallback
- HF_TOKEN authentication for gated models
Ready for production testing.
- src/config.py +11 -3
- src/local_model_loader.py +67 -9
- src/models_config.py +5 -3
|
@@ -61,12 +61,20 @@ class CacheDirectoryManager:
|
|
| 61 |
Returns:
|
| 62 |
str: Path to writable cache directory
|
| 63 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
cache_candidates = [
|
| 65 |
os.getenv("HF_HOME"),
|
| 66 |
os.getenv("TRANSFORMERS_CACHE"),
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
"
|
|
|
|
|
|
|
|
|
|
| 70 |
]
|
| 71 |
|
| 72 |
for cache_dir in cache_candidates:
|
|
|
|
| 61 |
Returns:
|
| 62 |
str: Path to writable cache directory
|
| 63 |
"""
|
| 64 |
+
# Priority order for cache directory
|
| 65 |
+
# In Docker, ~ may resolve to / which causes permission issues
|
| 66 |
+
# So we prefer /tmp over ~/.cache in containerized environments
|
| 67 |
+
is_docker = os.path.exists("/.dockerenv") or os.path.exists("/tmp")
|
| 68 |
+
|
| 69 |
cache_candidates = [
|
| 70 |
os.getenv("HF_HOME"),
|
| 71 |
os.getenv("TRANSFORMERS_CACHE"),
|
| 72 |
+
# In Docker, prefer /tmp over ~/.cache
|
| 73 |
+
"/tmp/huggingface_cache" if is_docker else None,
|
| 74 |
+
os.path.join(os.path.expanduser("~"), ".cache", "huggingface") if os.path.expanduser("~") and not is_docker else None,
|
| 75 |
+
os.path.join(os.path.expanduser("~"), ".cache", "huggingface_fallback") if os.path.expanduser("~") and not is_docker else None,
|
| 76 |
+
"/tmp/huggingface_cache" if not is_docker else None,
|
| 77 |
+
"/tmp/huggingface" # Final fallback
|
| 78 |
]
|
| 79 |
|
| 80 |
for cache_dir in cache_candidates:
|
|
@@ -2,6 +2,7 @@
|
|
| 2 |
# Local GPU-based model loading for NVIDIA T4 Medium (16GB VRAM)
|
| 3 |
# Optimized with 4-bit quantization to fit larger models
|
| 4 |
import logging
|
|
|
|
| 5 |
import torch
|
| 6 |
from typing import Optional, Dict, Any
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
|
@@ -10,9 +11,20 @@ from sentence_transformers import SentenceTransformer
|
|
| 10 |
# Import GatedRepoError for handling gated repositories
|
| 11 |
try:
|
| 12 |
from huggingface_hub.exceptions import GatedRepoError
|
|
|
|
| 13 |
except ImportError:
|
| 14 |
# Fallback if huggingface_hub is not available
|
| 15 |
GatedRepoError = Exception
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
|
@@ -39,6 +51,34 @@ class LocalModelLoader:
|
|
| 39 |
self.device = device
|
| 40 |
self.device_name = device
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
# Model cache
|
| 43 |
self.loaded_models: Dict[str, Any] = {}
|
| 44 |
self.loaded_tokenizers: Dict[str, Any] = {}
|
|
@@ -69,10 +109,12 @@ class LocalModelLoader:
|
|
| 69 |
if base_model_id != model_id:
|
| 70 |
logger.info(f"Stripping API suffix from {model_id}, using base model: {base_model_id}")
|
| 71 |
|
| 72 |
-
# Load tokenizer
|
| 73 |
try:
|
| 74 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 75 |
base_model_id,
|
|
|
|
|
|
|
| 76 |
trust_remote_code=True
|
| 77 |
)
|
| 78 |
except GatedRepoError as e:
|
|
@@ -108,22 +150,36 @@ class LocalModelLoader:
|
|
| 108 |
else:
|
| 109 |
quantization_config = None
|
| 110 |
|
| 111 |
-
# Load model with GPU optimization
|
| 112 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
if self.device == "cuda":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
model = AutoModelForCausalLM.from_pretrained(
|
| 115 |
base_model_id,
|
| 116 |
-
|
| 117 |
-
torch_dtype=torch.float16, # Use FP16 for memory efficiency
|
| 118 |
-
trust_remote_code=True,
|
| 119 |
-
**(quantization_config if isinstance(quantization_config, dict) else {}),
|
| 120 |
-
**({"quantization_config": quantization_config} if quantization_config and not isinstance(quantization_config, dict) else {})
|
| 121 |
)
|
| 122 |
else:
|
|
|
|
|
|
|
|
|
|
| 123 |
model = AutoModelForCausalLM.from_pretrained(
|
| 124 |
base_model_id,
|
| 125 |
-
|
| 126 |
-
trust_remote_code=True
|
| 127 |
)
|
| 128 |
model = model.to(self.device)
|
| 129 |
except GatedRepoError as e:
|
|
@@ -183,6 +239,8 @@ class LocalModelLoader:
|
|
| 183 |
logger.info(f"Stripping API suffix from {model_id}, using base model: {base_model_id}")
|
| 184 |
|
| 185 |
# SentenceTransformer automatically handles GPU
|
|
|
|
|
|
|
| 186 |
try:
|
| 187 |
model = SentenceTransformer(
|
| 188 |
base_model_id,
|
|
|
|
| 2 |
# Local GPU-based model loading for NVIDIA T4 Medium (16GB VRAM)
|
| 3 |
# Optimized with 4-bit quantization to fit larger models
|
| 4 |
import logging
|
| 5 |
+
import os
|
| 6 |
import torch
|
| 7 |
from typing import Optional, Dict, Any
|
| 8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
|
|
|
| 11 |
# Import GatedRepoError for handling gated repositories
|
| 12 |
try:
|
| 13 |
from huggingface_hub.exceptions import GatedRepoError
|
| 14 |
+
from huggingface_hub import login as hf_login
|
| 15 |
except ImportError:
|
| 16 |
# Fallback if huggingface_hub is not available
|
| 17 |
GatedRepoError = Exception
|
| 18 |
+
hf_login = None
|
| 19 |
+
|
| 20 |
+
# Import settings for cache directory and HF token
|
| 21 |
+
try:
|
| 22 |
+
from .config import settings
|
| 23 |
+
except ImportError:
|
| 24 |
+
try:
|
| 25 |
+
from config import settings
|
| 26 |
+
except ImportError:
|
| 27 |
+
settings = None
|
| 28 |
|
| 29 |
logger = logging.getLogger(__name__)
|
| 30 |
|
|
|
|
| 51 |
self.device = device
|
| 52 |
self.device_name = device
|
| 53 |
|
| 54 |
+
# Get cache directory from settings
|
| 55 |
+
if settings:
|
| 56 |
+
self.cache_dir = settings.hf_cache_dir
|
| 57 |
+
self.hf_token = settings.hf_token
|
| 58 |
+
else:
|
| 59 |
+
# Fallback to environment variables
|
| 60 |
+
self.cache_dir = os.getenv("HF_HOME") or os.getenv("TRANSFORMERS_CACHE") or "/tmp/huggingface"
|
| 61 |
+
self.hf_token = os.getenv("HF_TOKEN", "")
|
| 62 |
+
|
| 63 |
+
# Ensure cache directory exists and is writable
|
| 64 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
| 65 |
+
|
| 66 |
+
# Set environment variables for transformers/huggingface_hub
|
| 67 |
+
if not os.getenv("HF_HOME"):
|
| 68 |
+
os.environ["HF_HOME"] = self.cache_dir
|
| 69 |
+
if not os.getenv("TRANSFORMERS_CACHE"):
|
| 70 |
+
os.environ["TRANSFORMERS_CACHE"] = self.cache_dir
|
| 71 |
+
|
| 72 |
+
logger.info(f"Cache directory: {self.cache_dir}")
|
| 73 |
+
|
| 74 |
+
# Login to Hugging Face if token is provided (needed for gated repositories)
|
| 75 |
+
if self.hf_token and hf_login:
|
| 76 |
+
try:
|
| 77 |
+
hf_login(token=self.hf_token, add_to_git_credential=False)
|
| 78 |
+
logger.info("✓ HF_TOKEN authenticated for gated model access")
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.warning(f"HF_TOKEN login failed (may not be needed): {e}")
|
| 81 |
+
|
| 82 |
# Model cache
|
| 83 |
self.loaded_models: Dict[str, Any] = {}
|
| 84 |
self.loaded_tokenizers: Dict[str, Any] = {}
|
|
|
|
| 109 |
if base_model_id != model_id:
|
| 110 |
logger.info(f"Stripping API suffix from {model_id}, using base model: {base_model_id}")
|
| 111 |
|
| 112 |
+
# Load tokenizer with cache directory
|
| 113 |
try:
|
| 114 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 115 |
base_model_id,
|
| 116 |
+
cache_dir=self.cache_dir,
|
| 117 |
+
token=self.hf_token if self.hf_token else None,
|
| 118 |
trust_remote_code=True
|
| 119 |
)
|
| 120 |
except GatedRepoError as e:
|
|
|
|
| 150 |
else:
|
| 151 |
quantization_config = None
|
| 152 |
|
| 153 |
+
# Load model with GPU optimization and cache directory
|
| 154 |
try:
|
| 155 |
+
load_kwargs = {
|
| 156 |
+
"cache_dir": self.cache_dir,
|
| 157 |
+
"token": self.hf_token if self.hf_token else None,
|
| 158 |
+
"trust_remote_code": True
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
if self.device == "cuda":
|
| 162 |
+
load_kwargs.update({
|
| 163 |
+
"device_map": "auto", # Automatically uses GPU
|
| 164 |
+
"torch_dtype": torch.float16, # Use FP16 for memory efficiency
|
| 165 |
+
})
|
| 166 |
+
if quantization_config:
|
| 167 |
+
if isinstance(quantization_config, dict):
|
| 168 |
+
load_kwargs.update(quantization_config)
|
| 169 |
+
else:
|
| 170 |
+
load_kwargs["quantization_config"] = quantization_config
|
| 171 |
+
|
| 172 |
model = AutoModelForCausalLM.from_pretrained(
|
| 173 |
base_model_id,
|
| 174 |
+
**load_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
)
|
| 176 |
else:
|
| 177 |
+
load_kwargs.update({
|
| 178 |
+
"torch_dtype": torch.float32,
|
| 179 |
+
})
|
| 180 |
model = AutoModelForCausalLM.from_pretrained(
|
| 181 |
base_model_id,
|
| 182 |
+
**load_kwargs
|
|
|
|
| 183 |
)
|
| 184 |
model = model.to(self.device)
|
| 185 |
except GatedRepoError as e:
|
|
|
|
| 239 |
logger.info(f"Stripping API suffix from {model_id}, using base model: {base_model_id}")
|
| 240 |
|
| 241 |
# SentenceTransformer automatically handles GPU
|
| 242 |
+
# Note: SentenceTransformer uses cache_dir from environment or default location
|
| 243 |
+
# We can't directly pass cache_dir, but we've set HF_HOME and TRANSFORMERS_CACHE
|
| 244 |
try:
|
| 245 |
model = SentenceTransformer(
|
| 246 |
base_model_id,
|
|
@@ -9,7 +9,7 @@ LLM_CONFIG = {
|
|
| 9 |
"task": "general_reasoning",
|
| 10 |
"max_tokens": 8000, # Reduced from 10000
|
| 11 |
"temperature": 0.7,
|
| 12 |
-
"fallback":
|
| 13 |
"is_chat_model": True,
|
| 14 |
"use_4bit_quantization": True, # Enable 4-bit quantization for 16GB T4
|
| 15 |
"use_8bit_quantization": False
|
|
@@ -28,7 +28,8 @@ LLM_CONFIG = {
|
|
| 28 |
"specialization": "fast_inference",
|
| 29 |
"latency_target": "<100ms",
|
| 30 |
"is_chat_model": True,
|
| 31 |
-
"use_4bit_quantization": True
|
|
|
|
| 32 |
},
|
| 33 |
"safety_checker": {
|
| 34 |
"model_id": "Qwen/Qwen2.5-7B-Instruct", # Same model for all text tasks
|
|
@@ -36,7 +37,8 @@ LLM_CONFIG = {
|
|
| 36 |
"confidence_threshold": 0.85,
|
| 37 |
"purpose": "bias_detection",
|
| 38 |
"is_chat_model": True,
|
| 39 |
-
"use_4bit_quantization": True
|
|
|
|
| 40 |
}
|
| 41 |
},
|
| 42 |
"routing_logic": {
|
|
|
|
| 9 |
"task": "general_reasoning",
|
| 10 |
"max_tokens": 8000, # Reduced from 10000
|
| 11 |
"temperature": 0.7,
|
| 12 |
+
"fallback": "mistralai/Mistral-7B-Instruct-v0.2", # Non-gated fallback model
|
| 13 |
"is_chat_model": True,
|
| 14 |
"use_4bit_quantization": True, # Enable 4-bit quantization for 16GB T4
|
| 15 |
"use_8bit_quantization": False
|
|
|
|
| 28 |
"specialization": "fast_inference",
|
| 29 |
"latency_target": "<100ms",
|
| 30 |
"is_chat_model": True,
|
| 31 |
+
"use_4bit_quantization": True,
|
| 32 |
+
"fallback": "mistralai/Mistral-7B-Instruct-v0.2" # Non-gated fallback
|
| 33 |
},
|
| 34 |
"safety_checker": {
|
| 35 |
"model_id": "Qwen/Qwen2.5-7B-Instruct", # Same model for all text tasks
|
|
|
|
| 37 |
"confidence_threshold": 0.85,
|
| 38 |
"purpose": "bias_detection",
|
| 39 |
"is_chat_model": True,
|
| 40 |
+
"use_4bit_quantization": True,
|
| 41 |
+
"fallback": "mistralai/Mistral-7B-Instruct-v0.2" # Non-gated fallback
|
| 42 |
}
|
| 43 |
},
|
| 44 |
"routing_logic": {
|