File size: 5,186 Bytes
66dbebd ae20ff2 66dbebd ae20ff2 66dbebd ae20ff2 66dbebd ae20ff2 66dbebd ae20ff2 66dbebd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# orchestrator_engine.py
import uuid
import logging
from datetime import datetime
logger = logging.getLogger(__name__)
class MVPOrchestrator:
def __init__(self, llm_router, context_manager, agents):
self.llm_router = llm_router
self.context_manager = context_manager
self.agents = agents
self.execution_trace = []
logger.info("MVPOrchestrator initialized")
async def process_request(self, session_id: str, user_input: str) -> dict:
"""
Main orchestration flow with academic differentiation
"""
logger.info(f"Processing request for session {session_id}")
logger.info(f"User input: {user_input[:100]}")
try:
# Step 1: Generate unique interaction ID
interaction_id = self._generate_interaction_id(session_id)
logger.info(f"Generated interaction ID: {interaction_id}")
# Step 2: Context management
logger.info("Step 2: Managing context...")
context = await self.context_manager.manage_context(session_id, user_input)
logger.info(f"Context retrieved: {len(context.get('interactions', []))} interactions")
# Step 3: Intent recognition with CoT
logger.info("Step 3: Recognizing intent...")
intent_result = await self.agents['intent_recognition'].execute(
user_input=user_input,
context=context
)
logger.info(f"Intent detected: {intent_result.get('primary_intent', 'unknown')}")
# Step 4: Agent execution planning
logger.info("Step 4: Creating execution plan...")
execution_plan = await self._create_execution_plan(intent_result, context)
# Step 5: Parallel agent execution
logger.info("Step 5: Executing agents...")
agent_results = await self._execute_agents(execution_plan, user_input, context)
logger.info(f"Agent execution complete: {len(agent_results)} results")
# Step 6: Response synthesis
logger.info("Step 6: Synthesizing response...")
final_response = await self.agents['response_synthesis'].execute(
agent_outputs=agent_results,
user_input=user_input,
context=context
)
# Step 7: Safety and bias check
logger.info("Step 7: Safety check...")
safety_checked = await self.agents['safety_check'].execute(
response=final_response,
context=context
)
result = self._format_final_output(safety_checked, interaction_id)
logger.info(f"Request processing complete. Response length: {len(str(result.get('response', '')))}")
return result
except Exception as e:
logger.error(f"Error in process_request: {e}", exc_info=True)
return {
"response": f"Error processing request: {str(e)}",
"error": str(e),
"interaction_id": str(uuid.uuid4())[:8]
}
def _generate_interaction_id(self, session_id: str) -> str:
"""
Generate unique interaction identifier
"""
timestamp = datetime.now().isoformat()
unique_id = str(uuid.uuid4())[:8]
return f"{session_id}_{unique_id}_{int(datetime.now().timestamp())}"
async def _create_execution_plan(self, intent_result: dict, context: dict) -> dict:
"""
Create execution plan based on intent recognition
"""
# TODO: Implement agent selection and sequencing logic
return {
"agents_to_execute": [],
"execution_order": "parallel",
"priority": "normal"
}
async def _execute_agents(self, execution_plan: dict, user_input: str, context: dict) -> dict:
"""
Execute agents in parallel or sequential order based on plan
"""
# TODO: Implement parallel/sequential agent execution
return {}
def _format_final_output(self, response: dict, interaction_id: str) -> dict:
"""
Format final output with tracing and metadata
"""
return {
"interaction_id": interaction_id,
"response": response.get("final_response", ""),
"confidence_score": response.get("confidence_score", 0.0),
"agent_trace": self.execution_trace,
"timestamp": datetime.now().isoformat(),
"metadata": {
"agents_used": response.get("agents_used", []),
"processing_time": response.get("processing_time", 0),
"token_count": response.get("token_count", 0)
}
}
def get_execution_trace(self) -> list:
"""
Return execution trace for debugging and analysis
"""
return self.execution_trace
def clear_execution_trace(self):
"""
Clear the execution trace
"""
self.execution_trace = []
|