File size: 5,186 Bytes
66dbebd
 
ae20ff2
66dbebd
 
ae20ff2
 
66dbebd
 
 
 
 
 
ae20ff2
66dbebd
 
 
 
 
ae20ff2
 
66dbebd
ae20ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66dbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# orchestrator_engine.py
import uuid
import logging
from datetime import datetime

logger = logging.getLogger(__name__)

class MVPOrchestrator:
    def __init__(self, llm_router, context_manager, agents):
        self.llm_router = llm_router
        self.context_manager = context_manager
        self.agents = agents
        self.execution_trace = []
        logger.info("MVPOrchestrator initialized")
        
    async def process_request(self, session_id: str, user_input: str) -> dict:
        """
        Main orchestration flow with academic differentiation
        """
        logger.info(f"Processing request for session {session_id}")
        logger.info(f"User input: {user_input[:100]}")
        
        try:
            # Step 1: Generate unique interaction ID
            interaction_id = self._generate_interaction_id(session_id)
            logger.info(f"Generated interaction ID: {interaction_id}")
            
            # Step 2: Context management
            logger.info("Step 2: Managing context...")
            context = await self.context_manager.manage_context(session_id, user_input)
            logger.info(f"Context retrieved: {len(context.get('interactions', []))} interactions")
            
            # Step 3: Intent recognition with CoT
            logger.info("Step 3: Recognizing intent...")
            intent_result = await self.agents['intent_recognition'].execute(
                user_input=user_input,
                context=context
            )
            logger.info(f"Intent detected: {intent_result.get('primary_intent', 'unknown')}")
            
            # Step 4: Agent execution planning
            logger.info("Step 4: Creating execution plan...")
            execution_plan = await self._create_execution_plan(intent_result, context)
            
            # Step 5: Parallel agent execution
            logger.info("Step 5: Executing agents...")
            agent_results = await self._execute_agents(execution_plan, user_input, context)
            logger.info(f"Agent execution complete: {len(agent_results)} results")
            
            # Step 6: Response synthesis
            logger.info("Step 6: Synthesizing response...")
            final_response = await self.agents['response_synthesis'].execute(
                agent_outputs=agent_results,
                user_input=user_input,
                context=context
            )
            
            # Step 7: Safety and bias check
            logger.info("Step 7: Safety check...")
            safety_checked = await self.agents['safety_check'].execute(
                response=final_response,
                context=context
            )
            
            result = self._format_final_output(safety_checked, interaction_id)
            logger.info(f"Request processing complete. Response length: {len(str(result.get('response', '')))}")
            return result
            
        except Exception as e:
            logger.error(f"Error in process_request: {e}", exc_info=True)
            return {
                "response": f"Error processing request: {str(e)}",
                "error": str(e),
                "interaction_id": str(uuid.uuid4())[:8]
            }
    
    def _generate_interaction_id(self, session_id: str) -> str:
        """
        Generate unique interaction identifier
        """
        timestamp = datetime.now().isoformat()
        unique_id = str(uuid.uuid4())[:8]
        return f"{session_id}_{unique_id}_{int(datetime.now().timestamp())}"
    
    async def _create_execution_plan(self, intent_result: dict, context: dict) -> dict:
        """
        Create execution plan based on intent recognition
        """
        # TODO: Implement agent selection and sequencing logic
        return {
            "agents_to_execute": [],
            "execution_order": "parallel",
            "priority": "normal"
        }
    
    async def _execute_agents(self, execution_plan: dict, user_input: str, context: dict) -> dict:
        """
        Execute agents in parallel or sequential order based on plan
        """
        # TODO: Implement parallel/sequential agent execution
        return {}
    
    def _format_final_output(self, response: dict, interaction_id: str) -> dict:
        """
        Format final output with tracing and metadata
        """
        return {
            "interaction_id": interaction_id,
            "response": response.get("final_response", ""),
            "confidence_score": response.get("confidence_score", 0.0),
            "agent_trace": self.execution_trace,
            "timestamp": datetime.now().isoformat(),
            "metadata": {
                "agents_used": response.get("agents_used", []),
                "processing_time": response.get("processing_time", 0),
                "token_count": response.get("token_count", 0)
            }
        }
    
    def get_execution_trace(self) -> list:
        """
        Return execution trace for debugging and analysis
        """
        return self.execution_trace
    
    def clear_execution_trace(self):
        """
        Clear the execution trace
        """
        self.execution_trace = []