File size: 21,367 Bytes
66dbebd a5d9083 66dbebd a5d9083 66dbebd a5d9083 66dbebd a5d9083 66dbebd a5d9083 66dbebd a5d9083 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
# agent_stubs.py
"""
Agent implementations for the orchestrator
Core agents are fully implemented in src/agents/
Task-specific execution agents are implemented here
"""
import logging
from typing import Dict, Any, Optional
import asyncio
logger = logging.getLogger(__name__)
# Import the fully implemented core agents
from src.agents.intent_agent import IntentRecognitionAgent, create_intent_agent
from src.agents.synthesis_agent import EnhancedSynthesisAgent, create_synthesis_agent
from src.agents.safety_agent import SafetyCheckAgent, create_safety_agent
from src.agents.skills_identification_agent import SkillsIdentificationAgent, create_skills_identification_agent
# Compatibility wrappers for core agents
class IntentRecognitionAgentStub(IntentRecognitionAgent):
"""
Wrapper for the fully implemented Intent Recognition Agent
Maintains compatibility with orchestrator expectations
"""
pass
class ResponseSynthesisAgentStub(EnhancedSynthesisAgent):
"""
Wrapper for the fully implemented Enhanced Synthesis Agent
Maintains compatibility with orchestrator expectations
"""
pass
class SafetyCheckAgentStub(SafetyCheckAgent):
"""
Wrapper for the fully implemented Safety Check Agent
Maintains compatibility with orchestrator expectations
"""
pass
class SkillsIdentificationAgentStub(SkillsIdentificationAgent):
"""
Wrapper for the fully implemented Skills Identification Agent
Maintains compatibility with orchestrator expectations
"""
pass
# ============================================================================
# Task-Specific Execution Agents
# These agents handle specialized tasks in the execution plan
# ============================================================================
class TaskExecutionAgent:
"""
Base class for task-specific execution agents
Provides common functionality for all task agents
"""
def __init__(self, llm_router, agent_id: str, task_name: str, specialization: str = ""):
"""
Initialize task execution agent
Args:
llm_router: LLMRouter instance for making inference calls
agent_id: Unique identifier for this agent
task_name: Name of the task this agent handles
specialization: Description of what this agent specializes in
"""
self.llm_router = llm_router
self.agent_id = agent_id
self.task_name = task_name
self.specialization = specialization or f"Specialized in {task_name} tasks"
logger.info(f"Initialized {self.agent_id}: {self.specialization}")
async def execute(self, user_input: str, context: Dict[str, Any] = None,
previous_results: Dict[str, Any] = None, **kwargs) -> Dict[str, Any]:
"""
Execute the agent's task
Args:
user_input: Original user query
context: Conversation context
previous_results: Results from previous sequential tasks
**kwargs: Additional parameters
Returns:
Dict with task execution results
"""
try:
logger.info(f"{self.agent_id} executing task: {self.task_name}")
# Build task-specific prompt
prompt = self._build_execution_prompt(user_input, context, previous_results, **kwargs)
# Execute via LLM router
logger.debug(f"{self.agent_id} calling LLM router for {self.task_name}")
result = await self.llm_router.route_inference(
task_type="general_reasoning",
prompt=prompt,
max_tokens=kwargs.get('max_tokens', 2000),
temperature=kwargs.get('temperature', 0.7)
)
if result:
return {
"agent_id": self.agent_id,
"task": self.task_name,
"status": "completed",
"content": result,
"content_length": len(str(result)),
"method": "llm_enhanced"
}
else:
logger.warning(f"{self.agent_id} returned empty result")
return {
"agent_id": self.agent_id,
"task": self.task_name,
"status": "empty",
"content": "",
"content_length": 0,
"method": "llm_enhanced"
}
except Exception as e:
logger.error(f"{self.agent_id} execution failed: {e}", exc_info=True)
return {
"agent_id": self.agent_id,
"task": self.task_name,
"status": "error",
"error": str(e),
"content": "",
"method": "llm_enhanced"
}
def _build_execution_prompt(self, user_input: str, context: Dict[str, Any] = None,
previous_results: Dict[str, Any] = None, **kwargs) -> str:
"""
Build task-specific execution prompt
Override in subclasses for custom prompt building
"""
# Build context summary
context_summary = self._build_context_summary(context)
# Base prompt structure
prompt = f"""User Query: {user_input}
Context: {context_summary}
"""
# Add previous results if sequential execution
if previous_results:
prompt += f"\nPrevious Task Results:\n{self._format_previous_results(previous_results)}\n"
# Add task-specific instructions
prompt += f"\n{self._get_task_instructions()}"
return prompt
def _build_context_summary(self, context: Dict[str, Any] = None) -> str:
"""Build concise context summary"""
if not context:
return "No prior context"
summary_parts = []
# Extract interaction contexts
interaction_contexts = context.get('interaction_contexts', [])
if interaction_contexts:
recent_summaries = [ic.get('summary', '') for ic in interaction_contexts[-3:]]
if recent_summaries:
summary_parts.append(f"Recent topics: {', '.join(recent_summaries)}")
# Extract user context
user_context = context.get('user_context', '')
if user_context:
summary_parts.append(f"User background: {user_context[:200]}")
return " | ".join(summary_parts) if summary_parts else "No prior context"
def _format_previous_results(self, previous_results: Dict[str, Any]) -> str:
"""Format previous task results for inclusion in prompt"""
formatted = []
for task_name, result in previous_results.items():
if isinstance(result, dict):
content = result.get('content', result.get('result', ''))
if content:
formatted.append(f"- {task_name}: {str(content)[:500]}")
return "\n".join(formatted) if formatted else "No previous results"
def _get_task_instructions(self) -> str:
"""
Get task-specific instructions
Override in subclasses
"""
return f"Task: Execute {self.task_name} based on the user query and context."
# ============================================================================
# Specific Task Execution Agents
# ============================================================================
class InformationGatheringAgent(TaskExecutionAgent):
"""Agent specialized in gathering comprehensive information"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="INFO_GATH_001",
task_name="information_gathering",
specialization="Comprehensive information gathering and fact verification"
)
def _get_task_instructions(self) -> str:
return """Task: Gather comprehensive, accurate information relevant to the user's query.
- Focus on facts, definitions, explanations, and verified information
- Structure the information clearly with key points
- Cite important details and provide context
- Ensure accuracy and completeness"""
class ContentResearchAgent(TaskExecutionAgent):
"""Agent specialized in researching and compiling content"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="CONTENT_RESEARCH_001",
task_name="content_research",
specialization="Detailed content research and compilation"
)
def _get_task_instructions(self) -> str:
return """Task: Research and compile detailed content about the topic.
- Include multiple perspectives and viewpoints
- Gather current information and relevant examples
- Organize findings logically with clear sections
- Provide comprehensive coverage of the topic"""
class TaskPlanningAgent(TaskExecutionAgent):
"""Agent specialized in creating detailed execution plans"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="TASK_PLAN_001",
task_name="task_planning",
specialization="Detailed task planning and execution strategy"
)
def _get_task_instructions(self) -> str:
return """Task: Create a detailed execution plan for the requested task.
- Break down into clear, actionable steps
- Identify requirements and dependencies
- Outline expected outcomes and success criteria
- Consider potential challenges and solutions
- Provide timeline and resource estimates"""
class ExecutionStrategyAgent(TaskExecutionAgent):
"""Agent specialized in developing strategic approaches"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="EXEC_STRAT_001",
task_name="execution_strategy",
specialization="Strategic execution methodology development"
)
def _get_task_instructions(self) -> str:
return """Task: Develop a strategic approach for task execution.
- Define methodology and best practices
- Identify implementation considerations
- Provide actionable guidance with clear priorities
- Consider efficiency and effectiveness
- Address risk mitigation strategies"""
class CreativeBrainstormingAgent(TaskExecutionAgent):
"""Agent specialized in creative ideation"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="CREATIVE_BS_001",
task_name="creative_brainstorming",
specialization="Creative ideas generation and brainstorming"
)
def _get_task_instructions(self) -> str:
return """Task: Generate creative ideas and approaches for content creation.
- Explore different angles, styles, and formats
- Provide diverse creative options
- Include implementation suggestions
- Encourage innovative thinking
- Balance creativity with practicality"""
class ContentIdeationAgent(TaskExecutionAgent):
"""Agent specialized in content concept development"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="CONTENT_IDEATION_001",
task_name="content_ideation",
specialization="Content concepts and ideation development"
)
def _get_task_instructions(self) -> str:
return """Task: Develop content concepts and detailed ideation.
- Create outlines and structural frameworks
- Define themes and key messaging
- Suggest variations and refinement paths
- Provide detailed development paths
- Consider audience and purpose"""
class ResearchAnalysisAgent(TaskExecutionAgent):
"""Agent specialized in research analysis"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="RESEARCH_ANALYSIS_001",
task_name="research_analysis",
specialization="Thorough research analysis and insights"
)
def _get_task_instructions(self) -> str:
return """Task: Conduct thorough research analysis on the topic.
- Identify key findings, trends, and patterns
- Analyze different perspectives and methodologies
- Provide comprehensive insights
- Evaluate evidence and sources
- Synthesize complex information"""
class DataCollectionAgent(TaskExecutionAgent):
"""Agent specialized in data collection and organization"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="DATA_COLLECT_001",
task_name="data_collection",
specialization="Data point collection and evidence gathering"
)
def _get_task_instructions(self) -> str:
return """Task: Collect and organize relevant data points and evidence.
- Gather statistics, examples, and case studies
- Compile supporting information
- Structure data for easy analysis and reference
- Verify data quality and relevance
- Organize systematically"""
class PatternIdentificationAgent(TaskExecutionAgent):
"""Agent specialized in pattern recognition and analysis"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="PATTERN_ID_001",
task_name="pattern_identification",
specialization="Pattern recognition and correlation analysis"
)
def _get_task_instructions(self) -> str:
return """Task: Identify patterns, correlations, and significant relationships.
- Analyze trends and cause-effect relationships
- Discover underlying structures
- Provide insights based on pattern recognition
- Identify anomalies and exceptions
- Connect disparate information"""
class ProblemAnalysisAgent(TaskExecutionAgent):
"""Agent specialized in problem analysis"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="PROBLEM_ANALYSIS_001",
task_name="problem_analysis",
specialization="Detailed problem analysis and root cause identification"
)
def _get_task_instructions(self) -> str:
return """Task: Analyze the problem in detail.
- Identify root causes and contributing factors
- Understand constraints and limitations
- Break down the problem into components
- Map problem relationships
- Prioritize issues for systematic resolution"""
class SolutionResearchAgent(TaskExecutionAgent):
"""Agent specialized in solution research and evaluation"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="SOLUTION_RESEARCH_001",
task_name="solution_research",
specialization="Solution research and evaluation"
)
def _get_task_instructions(self) -> str:
return """Task: Research and evaluate potential solutions.
- Compare different approaches and methodologies
- Assess pros and cons of each option
- Recommend best practices
- Consider implementation feasibility
- Evaluate effectiveness and efficiency"""
class CurriculumPlanningAgent(TaskExecutionAgent):
"""Agent specialized in educational curriculum design"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="CURRICULUM_PLAN_001",
task_name="curriculum_planning",
specialization="Educational curriculum and learning path design"
)
def _get_task_instructions(self) -> str:
return """Task: Design educational curriculum and learning path.
- Structure content progressively
- Define clear learning objectives
- Suggest appropriate resources
- Create comprehensive learning framework
- Ensure pedagogical effectiveness"""
class EducationalContentAgent(TaskExecutionAgent):
"""Agent specialized in educational content generation"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="EDUC_CONTENT_001",
task_name="educational_content",
specialization="Educational content with clear explanations"
)
def _get_task_instructions(self) -> str:
return """Task: Generate educational content with clear explanations.
- Use effective teaching methods
- Provide examples and analogies
- Manage progressive complexity
- Make content accessible and engaging
- Support learning objectives"""
class TechnicalResearchAgent(TaskExecutionAgent):
"""Agent specialized in technical research"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="TECH_RESEARCH_001",
task_name="technical_research",
specialization="Technical aspects and solutions research"
)
def _get_task_instructions(self) -> str:
return """Task: Research technical aspects and solutions.
- Gather technical documentation
- Identify best practices and standards
- Compile implementation details
- Structure technical information clearly
- Provide practical guidance"""
class GuidanceGenerationAgent(TaskExecutionAgent):
"""Agent specialized in step-by-step guidance"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="GUIDANCE_GEN_001",
task_name="guidance_generation",
specialization="Step-by-step guidance and instructions"
)
def _get_task_instructions(self) -> str:
return """Task: Generate step-by-step guidance and instructions.
- Create clear, actionable steps
- Provide detailed explanations
- Include troubleshooting tips
- Ensure comprehensiveness
- Make guidance easy to follow"""
class ContextEnrichmentAgent(TaskExecutionAgent):
"""Agent specialized in context enrichment"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="CONTEXT_ENRICH_001",
task_name="context_enrichment",
specialization="Conversation context enrichment"
)
def _get_task_instructions(self) -> str:
return """Task: Enrich the conversation with relevant context and insights.
- Add helpful background information
- Connect to previous topics
- Include engaging details
- Enhance understanding
- Maintain conversation flow"""
class GeneralResearchAgent(TaskExecutionAgent):
"""Agent for general research tasks"""
def __init__(self, llm_router):
super().__init__(
llm_router,
agent_id="GENERAL_RESEARCH_001",
task_name="general_research",
specialization="General research and information gathering"
)
def _get_task_instructions(self) -> str:
return """Task: Conduct general research and information gathering.
- Compile relevant information
- Gather insights and useful details
- Organize findings clearly
- Provide comprehensive coverage
- Structure for easy reference"""
# ============================================================================
# Factory Functions for Task Execution Agents
# ============================================================================
def create_task_execution_agent(task_name: str, llm_router) -> TaskExecutionAgent:
"""
Factory function to create task-specific execution agents
Args:
task_name: Name of the task to create an agent for
llm_router: LLMRouter instance
Returns:
Appropriate TaskExecutionAgent instance
"""
agent_map = {
"information_gathering": InformationGatheringAgent,
"content_research": ContentResearchAgent,
"task_planning": TaskPlanningAgent,
"execution_strategy": ExecutionStrategyAgent,
"creative_brainstorming": CreativeBrainstormingAgent,
"content_ideation": ContentIdeationAgent,
"research_analysis": ResearchAnalysisAgent,
"data_collection": DataCollectionAgent,
"pattern_identification": PatternIdentificationAgent,
"problem_analysis": ProblemAnalysisAgent,
"solution_research": SolutionResearchAgent,
"curriculum_planning": CurriculumPlanningAgent,
"educational_content": EducationalContentAgent,
"technical_research": TechnicalResearchAgent,
"guidance_generation": GuidanceGenerationAgent,
"context_enrichment": ContextEnrichmentAgent,
"general_research": GeneralResearchAgent,
}
agent_class = agent_map.get(task_name, GeneralResearchAgent)
return agent_class(llm_router)
def create_task_execution_agents(task_names: list, llm_router) -> Dict[str, TaskExecutionAgent]:
"""
Factory function to create multiple task execution agents
Args:
task_names: List of task names to create agents for
llm_router: LLMRouter instance
Returns:
Dictionary mapping task names to agent instances
"""
agents = {}
for task_name in task_names:
agents[task_name] = create_task_execution_agent(task_name, llm_router)
return agents
|