File size: 53,634 Bytes
66dbebd ae20ff2 1ca61f9 d761f8e ae20ff2 fa862fc 80a97c8 ae20ff2 a5d9083 66dbebd c5e8f57 ae20ff2 c5e8f57 ae20ff2 c5e8f57 66dbebd c5e8f57 66dbebd b25c250 66dbebd 29048d9 66dbebd 29048d9 66dbebd 29048d9 66dbebd f809b88 66dbebd f809b88 66dbebd f809b88 66dbebd 7c65f3f 66dbebd c5e8f57 66dbebd b25c250 66dbebd c5e8f57 66dbebd c5e8f57 66dbebd 7efa4f1 66dbebd 7efa4f1 66dbebd 7efa4f1 d761f8e 1ca61f9 66dbebd f809b88 66dbebd f809b88 66dbebd f809b88 66dbebd f809b88 66dbebd f809b88 66dbebd f809b88 66dbebd f809b88 f96d28a fa862fc f809b88 fa862fc 1ca61f9 d761f8e f809b88 29048d9 f809b88 7efa4f1 f96d28a f809b88 7efa4f1 f96d28a f809b88 29048d9 f809b88 29048d9 f809b88 d761f8e 1ca61f9 c5e8f57 66dbebd a5d9083 66dbebd b25c250 29048d9 7c65f3f ae20ff2 b25c250 2bb821d 7efa4f1 f809b88 b25c250 7c65f3f ae20ff2 7c65f3f ae20ff2 29048d9 2bb821d ae20ff2 29048d9 7c65f3f ae20ff2 b25c250 7c65f3f 0d56066 0b5851a 0d56066 0b5851a 0d56066 0b5851a 0d56066 0b5851a 7c65f3f 7efa4f1 d761f8e 7efa4f1 2bb821d ae20ff2 0b5851a 29048d9 0b5851a ae20ff2 0d56066 29048d9 6d41cb5 2bb821d 7efa4f1 2bb821d 7efa4f1 d771375 7efa4f1 b25c250 2bb821d a5d9083 a547b75 a5d9083 2bb821d ae20ff2 6d41cb5 ae20ff2 d771375 e7bf096 d771375 6d41cb5 d761f8e 7c65f3f ae20ff2 7c65f3f 2bb821d 7c65f3f b25c250 7c65f3f d771375 ae20ff2 2bb821d 7c65f3f 2bb821d d771375 b25c250 c5e8f57 fa862fc 1ca61f9 fa862fc 1ca61f9 fa862fc 1ca61f9 fa862fc 1ca61f9 fa862fc 29048d9 ae20ff2 fa862fc ae20ff2 f809b88 ae20ff2 29048d9 11f308c fa862fc 1ca61f9 ae20ff2 d771375 fa862fc 1ca61f9 ae20ff2 c5e8f57 29048d9 c5e8f57 29048d9 11f308c cb5e65b c5e8f57 29048d9 1ca61f9 29048d9 b25c250 d761f8e 29048d9 1ca61f9 29048d9 1ca61f9 29048d9 1ca61f9 29048d9 1ca61f9 d761f8e 29048d9 f809b88 c5e8f57 ae20ff2 b25c250 ae20ff2 d761f8e fa862fc d761f8e fa862fc d761f8e ae20ff2 29048d9 ae20ff2 29048d9 ae20ff2 66dbebd ae20ff2 c5e8f57 66dbebd ae20ff2 c5e8f57 ae20ff2 c5e8f57 66dbebd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 |
# app.py - Mobile-First Implementation
import gradio as gr
import uuid
import logging
import traceback
from typing import Optional, Tuple, List, Dict, Any
import os
# Configure comprehensive logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log')
]
)
logger = logging.getLogger(__name__)
# Try to import orchestration components
orchestrator = None
orchestrator_available = False
# Process Flow Visualization - DISABLED
# Moving functionality to container logs instead of UI
process_flow_available = False
logger.info("Process Flow Visualization disabled - functionality moved to container logs")
try:
logger.info("Attempting to import orchestration components...")
import sys
sys.path.insert(0, '.')
sys.path.insert(0, 'src')
from src.agents.intent_agent import create_intent_agent
from src.agents.synthesis_agent import create_synthesis_agent
from src.agents.safety_agent import create_safety_agent
from src.agents.skills_identification_agent import create_skills_identification_agent
from src.llm_router import LLMRouter
from src.orchestrator_engine import MVPOrchestrator
from src.context_manager import EfficientContextManager
from src.config import settings
logger.info("β Successfully imported orchestration components")
orchestrator_available = True
except ImportError as e:
logger.warning(f"Could not import orchestration components: {e}")
# Note: System will gracefully degrade if orchestrator unavailable
# This is handled in process_message_async with proper user-facing messages
try:
from spaces import GPU
SPACES_GPU_AVAILABLE = True
logger.info("HF Spaces GPU available")
except ImportError:
# Not running on HF Spaces or spaces module not available
SPACES_GPU_AVAILABLE = False
GPU = None
logger.info("Running without HF Spaces GPU")
def create_mobile_optimized_interface():
"""Create the mobile-optimized Gradio interface and return demo with components"""
# Store components for wiring
interface_components = {}
with gr.Blocks(
title="AI Research Assistant MVP",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
font=("Inter", "system-ui", "sans-serif")
),
css="""
/* Mobile-first responsive CSS */
.mobile-container {
max-width: 100vw;
margin: 0 auto;
padding: 0 12px;
}
/* Touch-friendly button sizing */
.gradio-button {
min-height: 44px !important;
min-width: 44px !important;
font-size: 16px !important; /* Prevents zoom on iOS */
}
/* Mobile-optimized chat interface */
.chatbot-container {
height: 60vh !important;
max-height: 60vh !important;
overflow-y: auto !important;
-webkit-overflow-scrolling: touch !important;
}
/* Mobile input enhancements */
.textbox-input {
font-size: 16px !important; /* Prevents zoom */
min-height: 44px !important;
padding: 12px !important;
}
/* Responsive grid adjustments */
@media (max-width: 768px) {
.gradio-row {
flex-direction: column !important;
gap: 8px !important;
}
.gradio-column {
width: 100% !important;
}
.chatbot-container {
height: 50vh !important;
}
}
/* Dark mode support */
@media (prefers-color-scheme: dark) {
body {
background: #1a1a1a;
color: #ffffff;
}
}
/* Hide scrollbars but maintain functionality */
.chatbot-container::-webkit-scrollbar {
width: 4px;
}
/* Loading states */
.loading-indicator {
display: flex;
align-items: center;
justify-content: center;
padding: 20px;
}
/* Mobile menu enhancements */
.accordion-content {
max-height: 200px !important;
overflow-y: auto !important;
}
/* Skills Tags Styling */
#skills_tags_container {
padding: 8px 12px;
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
border-radius: 8px;
border: 1px solid #dee2e6;
margin: 8px 0;
min-height: 40px;
display: flex;
flex-wrap: wrap;
align-items: center;
gap: 6px;
}
.skill-tag {
display: inline-block;
background: linear-gradient(135deg, #007bff 0%, #0056b3 100%);
color: white;
padding: 4px 8px;
border-radius: 12px;
font-size: 12px;
font-weight: 500;
margin: 2px;
box-shadow: 0 2px 4px rgba(0,123,255,0.2);
transition: all 0.2s ease;
cursor: pointer;
}
.skill-tag:hover {
transform: translateY(-1px);
box-shadow: 0 4px 8px rgba(0,123,255,0.3);
}
.skill-tag.high-confidence {
background: linear-gradient(135deg, #28a745 0%, #1e7e34 100%);
}
.skill-tag.medium-confidence {
background: linear-gradient(135deg, #ffc107 0%, #e0a800 100%);
color: #212529;
}
.skill-tag.low-confidence {
background: linear-gradient(135deg, #6c757d 0%, #495057 100%);
}
.skills-header {
font-size: 11px;
color: #6c757d;
margin-right: 8px;
font-weight: 600;
}
/* Dark mode support for skills */
@media (prefers-color-scheme: dark) {
#skills_tags_container {
background: linear-gradient(135deg, #2d3748 0%, #1a202c 100%);
border-color: #4a5568;
}
.skills-header {
color: #a0aec0;
}
}
"""
) as demo:
# Session Management (Mobile-Optimized)
with gr.Column(elem_classes="mobile-container"):
gr.Markdown("""
# π§ Research Assistant
*Academic AI with transparent reasoning*
""")
# Session Header Bar (Mobile-Friendly)
with gr.Row():
# User Selection Dropdown
user_dropdown = gr.Dropdown(
choices=["Admin_J", "Dev_K", "Dev_H", "Dev_A", "Test_Any"],
value="Test_Any",
label="User",
show_label=False,
container=False,
scale=1,
min_width=100
)
interface_components['user_dropdown'] = user_dropdown
session_info = gr.Textbox(
label="Session Info",
value=f"Session: {str(uuid.uuid4())[:8]} | User: Test_Any | Interactions: 0",
max_lines=1,
show_label=False,
container=False,
scale=3,
interactive=False
)
interface_components['session_info'] = session_info
new_session_btn = gr.Button(
"π New",
size="sm",
variant="secondary",
scale=1,
min_width=60
)
interface_components['new_session_btn'] = new_session_btn
menu_toggle = gr.Button(
"βοΈ",
size="sm",
variant="secondary",
scale=1,
min_width=60
)
interface_components['menu_toggle'] = menu_toggle
# Main Chat Area (Mobile-Optimized)
with gr.Tabs() as main_tabs:
with gr.TabItem("π¬ Chat", id="chat_tab"):
chatbot = gr.Chatbot(
label="",
show_label=False,
height="60vh",
elem_classes="chatbot-container",
type="messages"
)
interface_components['chatbot'] = chatbot
# Skills Identification Display (between chat and input)
with gr.Row(visible=False, elem_id="skills_display") as skills_display_row:
skills_tags = gr.HTML(
value="",
show_label=False,
elem_id="skills_tags_container"
)
interface_components['skills_tags'] = skills_tags
# Mobile Input Area
with gr.Row():
message_input = gr.Textbox(
placeholder="Ask me anything...",
show_label=False,
max_lines=3,
container=False,
scale=4,
autofocus=True
)
interface_components['message_input'] = message_input
send_btn = gr.Button(
"β Send",
variant="primary",
scale=1,
min_width=80
)
interface_components['send_btn'] = send_btn
# Technical Details Tab (Collapsible for Mobile)
with gr.TabItem("π Details", id="details_tab"):
with gr.Accordion("Reasoning Chain", open=False):
reasoning_display = gr.JSON(
label="",
show_label=False
)
interface_components['reasoning_display'] = reasoning_display
with gr.Accordion("Agent Performance", open=False):
performance_display = gr.JSON(
label="",
show_label=False
)
interface_components['performance_display'] = performance_display
with gr.Accordion("Session Context", open=False):
context_display = gr.JSON(
label="",
show_label=False
)
interface_components['context_display'] = context_display
# Process Flow Tab - DISABLED
# Process flow information is now logged to container logs instead of UI
# Mobile Bottom Navigation
with gr.Row(visible=False, elem_id="mobile_nav") as mobile_navigation:
chat_nav_btn = gr.Button("π¬ Chat", variant="secondary", size="sm", min_width=0)
details_nav_btn = gr.Button("π Details", variant="secondary", size="sm", min_width=0)
settings_nav_btn = gr.Button("βοΈ Settings", variant="secondary", size="sm", min_width=0)
# Settings Panel (Modal for Mobile)
with gr.Column(visible=False, elem_id="settings_panel") as settings:
interface_components['settings_panel'] = settings
with gr.Accordion("Display Options", open=True):
show_reasoning = gr.Checkbox(
label="Show reasoning chain",
value=True,
info="Display step-by-step reasoning"
)
interface_components['show_reasoning'] = show_reasoning
show_agent_trace = gr.Checkbox(
label="Show agent execution trace",
value=False,
info="Display which agents processed your request"
)
interface_components['show_agent_trace'] = show_agent_trace
compact_mode = gr.Checkbox(
label="Compact mode",
value=False,
info="Optimize for smaller screens"
)
interface_components['compact_mode'] = compact_mode
with gr.Accordion("Performance Options", open=False):
response_speed = gr.Radio(
choices=["Fast", "Balanced", "Thorough"],
value="Balanced",
label="Response Speed Preference"
)
interface_components['response_speed'] = response_speed
cache_enabled = gr.Checkbox(
label="Enable context caching",
value=True,
info="Faster responses using session memory"
)
interface_components['cache_enabled'] = cache_enabled
save_prefs_btn = gr.Button("Save Preferences", variant="primary")
interface_components['save_prefs_btn'] = save_prefs_btn
# Wire up the submit handler INSIDE the gr.Blocks context
if 'send_btn' in interface_components and 'message_input' in interface_components and 'chatbot' in interface_components:
# Store interface components globally for dynamic return values
global _interface_components
_interface_components = interface_components
# Build outputs list dynamically
outputs = _build_outputs_list(interface_components)
# Include session_info in inputs to pass session ID
inputs = [interface_components['message_input'], interface_components['chatbot']]
if 'user_dropdown' in interface_components:
inputs.append(interface_components['user_dropdown'])
if 'session_info' in interface_components:
inputs.append(interface_components['session_info'])
interface_components['send_btn'].click(
fn=chat_handler_fn,
inputs=inputs,
outputs=outputs
)
# Wire up New Session button
if 'new_session_btn' in interface_components and 'session_info' in interface_components and 'user_dropdown' in interface_components:
def new_session(user_id):
new_session_id = str(uuid.uuid4())[:8]
return f"Session: {new_session_id} | User: {user_id} | Interactions: 0"
interface_components['new_session_btn'].click(
fn=new_session,
inputs=[interface_components['user_dropdown']],
outputs=[interface_components['session_info']]
)
# Wire up User Dropdown to update session info
if 'user_dropdown' in interface_components and 'session_info' in interface_components:
def update_session_info(user_id, session_text):
# Extract session_id from existing text
import re
match = re.search(r'Session: ([a-f0-9]+)', session_text)
session_id = match.group(1) if match else str(uuid.uuid4())[:8]
# Extract interaction count
match = re.search(r'Interactions: (\d+)', session_text)
interaction_count = match.group(1) if match else "0"
return f"Session: {session_id} | User: {user_id} | Interactions: {interaction_count}"
interface_components['user_dropdown'].change(
fn=update_session_info,
inputs=[interface_components['user_dropdown'], interface_components['session_info']],
outputs=[interface_components['session_info']]
)
# Wire up Settings button to toggle settings panel
if 'menu_toggle' in interface_components and 'settings_panel' in interface_components:
def toggle_settings(visible):
return gr.update(visible=not visible)
interface_components['menu_toggle'].click(
fn=toggle_settings,
inputs=[interface_components['settings_panel']],
outputs=[interface_components['settings_panel']]
)
# Wire up Save Preferences button
if 'save_prefs_btn' in interface_components:
def save_preferences(*args):
logger.info("Preferences saved")
gr.Info("Preferences saved successfully!")
interface_components['save_prefs_btn'].click(
fn=save_preferences,
inputs=[
interface_components.get('show_reasoning', None),
interface_components.get('show_agent_trace', None),
interface_components.get('response_speed', None),
interface_components.get('cache_enabled', None)
]
)
# Process Flow event handlers - DISABLED
# Process flow information is now logged to container logs instead of UI
return demo, interface_components
def setup_event_handlers(demo, event_handlers):
"""Setup event handlers for the interface"""
# Find components by their labels or types
components = {}
for block in demo.blocks:
if hasattr(block, 'label'):
if block.label == 'Session ID':
components['session_info'] = block
elif hasattr(block, 'value') and 'session' in str(block.value).lower():
components['session_id'] = block
# Setup message submission handler
try:
# This is a simplified version - you'll need to adapt based on your actual component structure
if hasattr(demo, 'submit'):
demo.submit(
fn=event_handlers.handle_message_submit,
inputs=[components.get('message_input'), components.get('chatbot')],
outputs=[components.get('message_input'), components.get('chatbot')]
)
except Exception as e:
logger.error(f"Could not setup event handlers: {e}", exc_info=True)
# Event handlers setup failure is logged but won't affect core chat functionality
# Gradio interface will still work with default handlers
return demo
def _generate_skills_html(identified_skills: List[Dict[str, Any]]) -> str:
"""Generate HTML for skills tags display"""
if not identified_skills:
return ""
# Limit to top 8 skills for UI
top_skills = identified_skills[:8]
# Generate HTML with confidence-based styling
skills_html = '<div class="skills-header">π― Relevant Skills:</div>'
for skill in top_skills:
skill_name = skill.get('skill', 'Unknown Skill')
probability = skill.get('probability', 0.5)
# Determine confidence class based on probability
if probability >= 0.7:
confidence_class = "high-confidence"
elif probability >= 0.4:
confidence_class = "medium-confidence"
else:
confidence_class = "low-confidence"
# Create skill tag
skills_html += f'<span class="skill-tag {confidence_class}" title="Probability: {probability:.1%}">{skill_name}</span>'
return skills_html
def _update_skills_display(skills_html: str) -> Tuple[str, bool]:
"""Update skills display visibility and content"""
if skills_html and len(skills_html.strip()) > 0:
return skills_html, True # Show skills display
else:
return "", False # Hide skills display
async def process_message_async(message: str, history: Optional[List], session_id: str, user_id: str = "Test_Any") -> Tuple[List, str, dict, dict, dict, str, str]:
"""
Process message with full orchestration system
Returns (updated_history, empty_string, reasoning_data, performance_data, context_data, session_id, skills_html)
GUARANTEES:
- Always returns a response (never None or empty)
- Handles all error cases gracefully
- Provides fallback responses at every level
- Returns metadata for Details tab
- Returns session_id to maintain session continuity
- Returns skills HTML for display
"""
global orchestrator
try:
logger.info(f"Processing message: {message[:100]}")
logger.info(f"Session ID: {session_id}")
logger.info(f"User ID: {user_id}")
logger.info(f"Orchestrator available: {orchestrator is not None}")
# Set user_id in orchestrator for context system
if orchestrator is not None:
if hasattr(orchestrator, 'set_user_id'):
orchestrator.set_user_id(session_id, user_id)
if not message or not message.strip():
logger.debug("Empty message received")
return history if history else [], "", {}, {}, {}, session_id, ""
if history is None:
history = []
new_history = list(history) if isinstance(history, list) else []
# Check if this is a safety choice response (BEFORE normal processing)
message_upper = message.strip().upper()
is_safety_choice = message_upper in ['YES', 'NO', 'APPLY', 'KEEP', 'Y', 'N']
# Check if we have a pending safety choice for this session
if is_safety_choice and orchestrator is not None:
# Check both _pending_choices (from app.py) and awaiting_safety_response (from orchestrator)
pending_choice = getattr(orchestrator, '_pending_choices', {}).get(session_id)
awaiting_response = getattr(orchestrator, 'awaiting_safety_response', {}).get(session_id, False)
if pending_choice or awaiting_response:
logger.info(f"Processing safety choice response: {message_upper} (session: {session_id})")
# Determine user decision
user_decision = message_upper in ['YES', 'APPLY', 'Y']
# Process the safety choice directly (bypasses normal safety checks)
if pending_choice:
choice_result = await orchestrator.handle_user_safety_decision(
pending_choice['choice_id'],
user_decision,
session_id
)
# Clean up pending choice
if hasattr(orchestrator, '_pending_choices'):
orchestrator._pending_choices.pop(session_id, None)
else:
# Fallback: if no pending choice but flag is set, skip safety check
logger.warning(f"Safety response flag set but no pending choice found - bypassing safety check")
return new_history, "", {}, {}, {}, session_id, ""
# Add user message
new_history.append({"role": "user", "content": message.strip()})
# Add assistant response
if 'error' in choice_result:
response = f"Error processing safety choice: {choice_result['error']}"
else:
response = choice_result.get('response', choice_result.get('final_response', 'Processing complete.'))
new_history.append({"role": "assistant", "content": response})
# Extract metadata
reasoning_data = {}
performance_data = {
"user_choice": choice_result.get('user_choice', 'unknown'),
"revision_applied": choice_result.get('revision_applied', False)
}
context_data = {
"interaction_id": choice_result.get('interaction_id', 'unknown'),
"session_id": session_id
}
# Ensure flags are cleared
if hasattr(orchestrator, 'awaiting_safety_response'):
orchestrator.awaiting_safety_response.pop(session_id, None)
return new_history, "", reasoning_data, performance_data, context_data, session_id, ""
# Add user message (normal flow)
new_history.append({"role": "user", "content": message.strip()})
# Initialize Details tab data
reasoning_data = {}
performance_data = {}
context_data = {}
skills_html = "" # Initialize skills_html
# GUARANTEE: Always get a response
response = "Hello! I'm processing your request..."
# Try to use orchestrator if available
if orchestrator is not None:
try:
logger.info("Attempting full orchestration...")
# Use normal processing (user choice feature is PAUSED)
# Safety warnings are automatically appended to responses when thresholds exceeded
result = await orchestrator.process_request(
session_id=session_id,
user_input=message.strip()
)
# Check if result indicates this was a safety response (should have been handled above)
if result.get('is_safety_response', False):
logger.warning("Safety response detected in normal processing - should have been handled earlier")
# Skip further processing
return new_history, "", {}, {}, {}, session_id, ""
# USER CHOICE FEATURE PAUSED - Warnings automatically appended to responses
# No reiteration/revision happens - responses are returned with warnings when thresholds exceeded
logger.info("Processing response - safety warnings appended automatically if needed (no revisions)")
# Extract response from result with multiple fallback checks
if isinstance(result, dict):
# Extract the text response (not the dict)
response = (
result.get('response') or
result.get('final_response') or
result.get('safety_checked_response') or
result.get('original_response') or
str(result.get('result', ''))
)
# Extract metadata for Details tab with enhanced reasoning chain
reasoning_data = result.get('metadata', {}).get('reasoning_chain', {
"chain_of_thought": {},
"alternative_paths": [],
"uncertainty_areas": [],
"evidence_sources": [],
"confidence_calibration": {}
})
# Ensure we have the enhanced structure even if orchestrator didn't provide it
if not reasoning_data.get('chain_of_thought'):
reasoning_data = {
"chain_of_thought": {
"step_1": {
"hypothesis": "Processing user request",
"evidence": [f"User input: {message[:50]}..."],
"confidence": 0.7,
"reasoning": "Basic request processing"
}
},
"alternative_paths": [],
"uncertainty_areas": [],
"evidence_sources": [],
"confidence_calibration": {"overall_confidence": 0.7}
}
performance_data = {
"agent_trace": result.get('agent_trace', []),
"processing_time": result.get('metadata', {}).get('processing_time', 0),
"token_count": result.get('metadata', {}).get('token_count', 0),
"confidence_score": result.get('confidence_score', 0.7),
"agents_used": result.get('metadata', {}).get('agents_used', [])
}
context_data = {
"interaction_id": result.get('interaction_id', 'unknown'),
"session_id": session_id,
"timestamp": result.get('timestamp', ''),
"warnings": result.get('metadata', {}).get('warnings', [])
}
# Extract skills data for UI display
skills_html = ""
skills_result = result.get('metadata', {}).get('skills_result', {})
if skills_result and skills_result.get('identified_skills'):
skills_html = _generate_skills_html(skills_result['identified_skills'])
else:
response = str(result) if result else "Processing complete."
# Final safety check - ensure response is not empty (only for actual errors)
# Handle both string and dict types
if isinstance(response, dict):
response = str(response.get('content', response))
if not response or (isinstance(response, str) and len(response.strip()) == 0):
# This should only happen if LLM API completely fails - log it
logger.warning(f"Empty response received from orchestrator for message: {message[:50]}...")
response = (
f"I received your message about '{message[:50]}...'. "
f"I'm processing your request and working on providing you with a comprehensive answer. "
f"Please wait a moment and try again if needed."
)
logger.info(f"Orchestrator returned response (length: {len(response)})")
except Exception as orch_error:
logger.error(f"Orchestrator error with safety revision: {orch_error}", exc_info=True)
try:
# Graceful degradation to original orchestrator method
logger.info("Falling back to original orchestrator method...")
result = await orchestrator.process_request(
session_id=session_id,
user_input=message.strip()
)
result['fallback_used'] = True
result['revision_attempts'] = 0
logger.info("β Fallback to original orchestrator successful")
# Extract response from fallback result
response = (
result.get('response') or
result.get('final_response') or
result.get('safety_checked_response') or
result.get('original_response') or
str(result.get('result', ''))
)
# Extract metadata from fallback result
reasoning_data = result.get('metadata', {}).get('reasoning_chain', {
"chain_of_thought": {},
"alternative_paths": [],
"uncertainty_areas": [],
"evidence_sources": [],
"confidence_calibration": {}
})
performance_data = {
"agent_trace": result.get('agent_trace', []),
"processing_time": result.get('metadata', {}).get('processing_time', 0),
"token_count": result.get('metadata', {}).get('token_count', 0),
"confidence_score": result.get('confidence_score', 0.7),
"agents_used": result.get('metadata', {}).get('agents_used', [])
}
context_data = {
"interaction_id": result.get('interaction_id', 'unknown'),
"session_id": session_id,
"timestamp": result.get('timestamp', ''),
"warnings": result.get('metadata', {}).get('warnings', [])
}
# Extract skills data from fallback
skills_html = ""
skills_result = result.get('metadata', {}).get('skills_result', {})
if skills_result and skills_result.get('identified_skills'):
skills_html = _generate_skills_html(skills_result['identified_skills'])
except Exception as fallback_error:
logger.error(f"Fallback orchestrator also failed: {fallback_error}", exc_info=True)
# Fallback response with error info and enhanced reasoning
response = f"I'm experiencing some technical difficulties. Your message was: '{message[:100]}...' Please try again or rephrase your question."
reasoning_data = {
"chain_of_thought": {
"step_1": {
"hypothesis": "System encountered an error during processing",
"evidence": [f"Error: {str(orch_error)[:100]}..."],
"confidence": 0.3,
"reasoning": "Orchestrator failure - fallback mode activated"
}
},
"alternative_paths": [],
"uncertainty_areas": [
{
"aspect": "System reliability",
"confidence": 0.3,
"mitigation": "Error handling and graceful degradation"
}
],
"evidence_sources": [],
"confidence_calibration": {"overall_confidence": 0.3, "error_mode": True}
}
performance_data = {}
context_data = {}
skills_html = ""
else:
# System initialization message with enhanced reasoning
logger.info("Orchestrator not yet available")
response = f"Hello! I received your message about: '{message}'.\n\nThe orchestration system is initializing. Your question is important and I'll provide a comprehensive answer shortly."
reasoning_data = {
"chain_of_thought": {
"step_1": {
"hypothesis": "System is initializing and not yet ready",
"evidence": ["Orchestrator not available", f"User input: {message[:50]}..."],
"confidence": 0.5,
"reasoning": "System startup phase - components loading"
}
},
"alternative_paths": [],
"uncertainty_areas": [
{
"aspect": "System readiness",
"confidence": 0.5,
"mitigation": "Graceful initialization message"
}
],
"evidence_sources": [],
"confidence_calibration": {"overall_confidence": 0.5, "initialization_mode": True}
}
performance_data = {}
context_data = {}
skills_html = "" # Initialize skills_html for orchestrator not available case
# Add assistant response
new_history.append({"role": "assistant", "content": response})
logger.info("β Message processing complete")
return new_history, "", reasoning_data, performance_data, context_data, session_id, skills_html
except Exception as e:
# FINAL FALLBACK: Always return something to user with enhanced reasoning
logger.error(f"Error in process_message_async: {e}", exc_info=True)
# Create error history with helpful message
error_history = list(history) if history else []
error_history.append({"role": "user", "content": message})
# User-friendly error message
error_message = (
f"I encountered a technical issue processing your message: '{message[:50]}...'. "
f"Please try rephrasing your question or contact support if this persists."
)
error_history.append({"role": "assistant", "content": error_message})
# Enhanced reasoning for error case
reasoning_data = {
"chain_of_thought": {
"step_1": {
"hypothesis": "Critical system error occurred",
"evidence": [f"Exception: {str(e)[:100]}...", f"User input: {message[:50]}..."],
"confidence": 0.2,
"reasoning": "System error handling - final fallback activated"
}
},
"alternative_paths": [],
"uncertainty_areas": [
{
"aspect": "System stability",
"confidence": 0.2,
"mitigation": "Error logging and user notification"
}
],
"evidence_sources": [],
"confidence_calibration": {"overall_confidence": 0.2, "critical_error": True}
}
return error_history, "", reasoning_data, {}, {}, session_id, ""
# Global variable to store interface components for dynamic return values
_interface_components = {}
def _build_outputs_list(interface_components: dict) -> list:
"""
Build outputs list dynamically based on available interface components
"""
outputs = [interface_components['chatbot'], interface_components['message_input']]
# Add Details tab components
if 'reasoning_display' in interface_components:
outputs.append(interface_components['reasoning_display'])
if 'performance_display' in interface_components:
outputs.append(interface_components['performance_display'])
if 'context_display' in interface_components:
outputs.append(interface_components['context_display'])
if 'session_info' in interface_components:
outputs.append(interface_components['session_info'])
if 'skills_tags' in interface_components:
outputs.append(interface_components['skills_tags'])
# Process Flow outputs - DISABLED
# Process flow information is now logged to container logs instead of UI
return outputs
def _build_dynamic_return_values(result: tuple, skills_content: str, interface_components: dict) -> tuple:
"""
Build return values dynamically based on available interface components
This ensures the return values match the outputs list exactly
"""
return_values = []
# Base components (always present)
return_values.extend([
result[0], # chatbot (history)
result[1], # message_input (empty_string)
])
# Add Details tab components
if 'reasoning_display' in interface_components:
return_values.append(result[2]) # reasoning_data
if 'performance_display' in interface_components:
return_values.append(result[3]) # performance_data
if 'context_display' in interface_components:
return_values.append(result[4]) # context_data
if 'session_info' in interface_components:
return_values.append(result[5]) # session_id
if 'skills_tags' in interface_components:
return_values.append(skills_content) # skills_content
# Process Flow outputs - DISABLED
# Process flow information is now logged to container logs instead of UI
return tuple(return_values)
def process_message(message: str, history: Optional[List], session_id: Optional[str] = None, user_id: str = "Test_Any") -> tuple:
"""
Synchronous wrapper for async processing
Returns dynamic tuple based on available interface components
"""
import asyncio
# Use provided session_id or generate a new one
if not session_id:
session_id = str(uuid.uuid4())[:8]
try:
# Run async processing
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(process_message_async(message, history, session_id, user_id))
# Extract skills_html from result and determine visibility
skills_html = result[6]
skills_content, skills_visible = _update_skills_display(skills_html)
# Return dynamic values based on available components
return _build_dynamic_return_values(result, skills_content, _interface_components)
except Exception as e:
logger.error(f"Error in process_message: {e}", exc_info=True)
error_history = list(history) if history else []
error_history.append({"role": "user", "content": message})
error_history.append({"role": "assistant", "content": f"Error: {str(e)}"})
# Enhanced reasoning for sync error case
reasoning_data = {
"chain_of_thought": {
"step_1": {
"hypothesis": "Synchronous processing error",
"evidence": [f"Sync error: {str(e)[:100]}...", f"User input: {message[:50]}..."],
"confidence": 0.2,
"reasoning": "Synchronous wrapper error handling"
}
},
"alternative_paths": [],
"uncertainty_areas": [
{
"aspect": "Processing reliability",
"confidence": 0.2,
"mitigation": "Error logging and fallback response"
}
],
"evidence_sources": [],
"confidence_calibration": {"overall_confidence": 0.2, "sync_error": True}
}
# Return dynamic values for error case
error_result = (error_history, "", reasoning_data, {}, {}, session_id, "")
return _build_dynamic_return_values(error_result, "", _interface_components)
# Decorate the chat handler with GPU if available
if SPACES_GPU_AVAILABLE and GPU is not None:
@GPU # This decorator is detected by HF Spaces for ZeroGPU allocation
def gpu_chat_handler(message, history, user_id="Test_Any", session_text=""):
"""Handle chat messages with GPU support"""
# Extract session_id from session_text or generate new one
import re
match = re.search(r'Session: ([a-f0-9]+)', session_text) if session_text else None
session_id = match.group(1) if match else str(uuid.uuid4())[:8]
result = process_message(message, history, session_id, user_id)
# Return all 15 values directly
return result
def safe_gpu_chat_handler(message, history, user_id="Test_Any", session_text=""):
"""
Wrapper to catch any exceptions from GPU decorator cleanup phase.
This prevents exceptions during device release from propagating to Gradio UI.
"""
try:
# Call the GPU-decorated handler
return gpu_chat_handler(message, history, user_id, session_text)
except Exception as e:
# If decorator cleanup raises an exception, catch it and recompute result
# This is safe because the actual processing already completed successfully
logger.warning(
f"GPU decorator cleanup error caught (non-fatal): {e}. "
f"Recomputing result to avoid UI error propagation."
)
# Extract session_id from session_text or generate new one
import re
match = re.search(r'Session: ([a-f0-9]+)', session_text) if session_text else None
session_id = match.group(1) if match else str(uuid.uuid4())[:8]
# Recompute result without GPU decorator (safe fallback)
result = process_message(message, history, session_id, user_id)
return result
chat_handler_fn = safe_gpu_chat_handler
else:
def chat_handler_wrapper(message, history, user_id="Test_Any", session_text=""):
"""Wrapper to handle session ID - Process Flow functionality moved to logs"""
# Extract session_id from session_text or generate new one
import re
match = re.search(r'Session: ([a-f0-9]+)', session_text) if session_text else None
session_id = match.group(1) if match else str(uuid.uuid4())[:8]
result = process_message(message, history, session_id, user_id)
# Extract skills_html from result and determine visibility
skills_html = result[6]
skills_content, skills_visible = _update_skills_display(skills_html)
# Update session info with interaction count
try:
context_data = result[4]
# Get interaction count from context or increment
import sqlite3
import re
conn = sqlite3.connect("sessions.db")
cursor = conn.cursor()
cursor.execute("""
SELECT COUNT(*) FROM interaction_contexts WHERE session_id = ?
""", (session_id,))
interaction_count = cursor.fetchone()[0]
conn.close()
except Exception:
interaction_count = 0
# Update session_info if available
updated_session_info = f"Session: {session_id} | User: {user_id} | Interactions: {interaction_count}"
# Log process flow information to container logs instead of UI
try:
# Extract data for process flow logging
reasoning_data = result[2]
performance_data = result[3]
context_data = result[4]
# Log comprehensive process flow information
logger.info("=" * 60)
logger.info("PROCESS FLOW LOGGING")
logger.info("=" * 60)
logger.info(f"Session ID: {session_id}")
logger.info(f"User ID: {user_id}")
logger.info(f"User Input: {message[:100]}...")
logger.info(f"Processing Time: {performance_data.get('processing_time', 0):.2f}s")
# Log intent recognition details
if reasoning_data.get("chain_of_thought"):
logger.info("Intent Recognition:")
logger.info(f" - Primary Intent: {reasoning_data.get('chain_of_thought', {}).get('step_1', {}).get('hypothesis', 'unknown')}")
logger.info(f" - Confidence: {reasoning_data.get('confidence_calibration', {}).get('overall_confidence', 0.7):.2f}")
# Log performance metrics
logger.info("Performance Metrics:")
logger.info(f" - Agent Trace: {performance_data.get('agent_trace', [])}")
logger.info(f" - Token Count: {performance_data.get('token_count', 0)}")
logger.info(f" - Confidence Score: {performance_data.get('confidence_score', 0.7):.2f}")
logger.info(f" - Agents Used: {performance_data.get('agents_used', [])}")
# Log context information
logger.info("Context Information:")
logger.info(f" - User ID: {user_id}")
logger.info(f" - Session ID: {session_id}")
logger.info(f" - Interaction ID: {context_data.get('interaction_id', 'unknown')}")
logger.info(f" - Interaction Count: {interaction_count}")
logger.info(f" - Timestamp: {context_data.get('timestamp', '')}")
logger.info(f" - Warnings: {context_data.get('warnings', [])}")
# Log skills identification if available
if skills_html and len(skills_html.strip()) > 0:
logger.info("Skills Identification:")
logger.info(f" - Skills HTML: {skills_html}")
logger.info("=" * 60)
logger.info("END PROCESS FLOW LOGGING")
logger.info("=" * 60)
except Exception as e:
logger.error(f"Error logging process flow: {e}")
# Build return values with updated session info
return_values = list(_build_dynamic_return_values(result, skills_content, _interface_components))
# Update session_info in return values if present
if 'session_info' in _interface_components and len(return_values) > 2:
# Find session_info index in outputs
outputs_list = _build_outputs_list(_interface_components)
if 'session_info' in _interface_components:
try:
session_info_idx = outputs_list.index(_interface_components['session_info'])
if session_info_idx < len(return_values):
return_values[session_info_idx] = updated_session_info
except (ValueError, IndexError):
pass
return tuple(return_values)
chat_handler_fn = chat_handler_wrapper
# Initialize orchestrator on module load
def initialize_orchestrator():
"""Initialize the orchestration system with logging"""
global orchestrator
if not orchestrator_available:
logger.info("Orchestrator components not available, skipping initialization")
return
try:
logger.info("=" * 60)
logger.info("INITIALIZING ORCHESTRATION SYSTEM")
logger.info("=" * 60)
# Get HF token
hf_token = os.getenv('HF_TOKEN', '')
if not hf_token:
logger.warning("HF_TOKEN not found in environment")
# Initialize LLM Router
logger.info("Step 1/6: Initializing LLM Router...")
llm_router = LLMRouter(hf_token)
logger.info("β LLM Router initialized")
# Initialize Agents
logger.info("Step 2/6: Initializing Agents...")
agents = {
'intent_recognition': create_intent_agent(llm_router),
'response_synthesis': create_synthesis_agent(llm_router),
'safety_check': create_safety_agent(llm_router),
}
# Add skills identification agent
skills_agent = create_skills_identification_agent(llm_router)
agents['skills_identification'] = skills_agent
logger.info("β Skills identification agent initialized")
logger.info(f"β Initialized {len(agents)} agents")
# Initialize Context Manager (with LLM router for context generation)
logger.info("Step 3/6: Initializing Context Manager...")
context_manager = EfficientContextManager(llm_router=llm_router)
logger.info("β Context Manager initialized")
# Initialize Orchestrator
logger.info("Step 4/6: Initializing Orchestrator...")
orchestrator = MVPOrchestrator(llm_router, context_manager, agents)
logger.info("β Orchestrator initialized")
logger.info("=" * 60)
logger.info("ORCHESTRATION SYSTEM READY")
logger.info("=" * 60)
except Exception as e:
logger.error(f"Failed to initialize orchestrator: {e}", exc_info=True)
orchestrator = None
# Try to initialize orchestrator
initialize_orchestrator()
if __name__ == "__main__":
logger.info("=" * 60)
logger.info("STARTING APP")
logger.info("=" * 60)
demo, components = create_mobile_optimized_interface()
logger.info("β Interface created")
logger.info(f"Orchestrator available: {orchestrator is not None}")
# Launch the app
logger.info("=" * 60)
logger.info("LAUNCHING GRADIO APP")
logger.info("=" * 60)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|