File size: 53,634 Bytes
66dbebd
 
 
ae20ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca61f9
 
 
 
d761f8e
ae20ff2
 
 
 
 
 
 
 
 
fa862fc
80a97c8
 
 
 
ae20ff2
 
 
 
 
a5d9083
 
66dbebd
c5e8f57
 
 
ae20ff2
c5e8f57
 
 
 
ae20ff2
c5e8f57
66dbebd
c5e8f57
 
 
 
 
66dbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25c250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66dbebd
 
 
 
 
 
 
 
 
 
 
 
29048d9
 
 
 
 
 
 
 
 
 
 
 
66dbebd
29048d9
 
66dbebd
 
 
29048d9
 
66dbebd
f809b88
66dbebd
 
 
 
 
 
 
 
f809b88
66dbebd
 
 
 
 
 
 
 
f809b88
66dbebd
 
 
 
 
 
 
 
 
7c65f3f
66dbebd
c5e8f57
66dbebd
b25c250
 
 
 
 
 
 
 
 
66dbebd
 
 
 
 
 
 
 
 
 
c5e8f57
66dbebd
 
 
 
 
 
 
c5e8f57
66dbebd
 
 
 
 
 
 
 
7efa4f1
66dbebd
 
 
 
 
 
7efa4f1
66dbebd
 
 
 
 
 
7efa4f1
d761f8e
1ca61f9
 
66dbebd
 
 
 
 
 
 
 
 
f809b88
 
66dbebd
 
 
 
 
 
f809b88
66dbebd
 
 
 
 
 
f809b88
66dbebd
 
 
 
 
 
f809b88
66dbebd
 
 
 
 
 
 
f809b88
66dbebd
 
 
 
 
 
f809b88
66dbebd
f809b88
 
f96d28a
 
 
fa862fc
 
 
f809b88
fa862fc
1ca61f9
d761f8e
f809b88
 
29048d9
 
f809b88
 
7efa4f1
f96d28a
 
f809b88
7efa4f1
f96d28a
f809b88
 
29048d9
 
 
 
 
f809b88
29048d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f809b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d761f8e
1ca61f9
 
c5e8f57
 
66dbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5d9083
 
 
66dbebd
 
 
b25c250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29048d9
7c65f3f
ae20ff2
b25c250
2bb821d
 
 
 
 
7efa4f1
f809b88
b25c250
7c65f3f
ae20ff2
 
7c65f3f
ae20ff2
 
29048d9
2bb821d
ae20ff2
29048d9
 
 
 
 
7c65f3f
ae20ff2
b25c250
7c65f3f
 
 
 
 
 
0d56066
0b5851a
 
 
 
0d56066
 
 
 
 
 
 
0b5851a
 
 
 
0d56066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5851a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d56066
 
 
 
0b5851a
 
 
7c65f3f
 
7efa4f1
 
 
 
d761f8e
7efa4f1
2bb821d
 
 
ae20ff2
 
 
0b5851a
29048d9
 
0b5851a
ae20ff2
 
 
 
0d56066
 
 
 
 
 
29048d9
 
 
6d41cb5
2bb821d
 
7efa4f1
2bb821d
 
 
 
 
 
 
7efa4f1
d771375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7efa4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25c250
 
 
 
 
 
2bb821d
 
 
a5d9083
a547b75
 
 
 
a5d9083
 
 
 
 
 
 
2bb821d
 
ae20ff2
 
6d41cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae20ff2
d771375
e7bf096
 
d771375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d41cb5
 
d761f8e
7c65f3f
ae20ff2
7c65f3f
2bb821d
7c65f3f
b25c250
7c65f3f
 
d771375
ae20ff2
2bb821d
 
7c65f3f
 
2bb821d
 
 
 
 
 
 
 
d771375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25c250
c5e8f57
fa862fc
 
 
1ca61f9
fa862fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca61f9
 
fa862fc
 
 
1ca61f9
fa862fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca61f9
 
fa862fc
 
 
29048d9
ae20ff2
 
fa862fc
ae20ff2
 
 
f809b88
 
 
ae20ff2
 
 
 
 
29048d9
11f308c
 
 
 
 
fa862fc
1ca61f9
ae20ff2
 
 
 
 
d771375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa862fc
 
1ca61f9
ae20ff2
c5e8f57
 
 
29048d9
c5e8f57
29048d9
 
 
 
 
11f308c
 
cb5e65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5e8f57
29048d9
1ca61f9
29048d9
 
 
 
 
b25c250
 
 
d761f8e
29048d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca61f9
 
 
 
 
 
 
 
 
 
 
 
29048d9
1ca61f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29048d9
 
1ca61f9
29048d9
1ca61f9
 
 
 
 
 
 
 
 
 
 
 
 
 
d761f8e
29048d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f809b88
c5e8f57
ae20ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25c250
ae20ff2
d761f8e
fa862fc
d761f8e
fa862fc
 
d761f8e
ae20ff2
 
29048d9
ae20ff2
29048d9
ae20ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66dbebd
ae20ff2
 
 
 
c5e8f57
66dbebd
ae20ff2
 
 
c5e8f57
ae20ff2
 
 
c5e8f57
 
 
 
 
66dbebd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
# app.py - Mobile-First Implementation
import gradio as gr
import uuid
import logging
import traceback
from typing import Optional, Tuple, List, Dict, Any
import os

# Configure comprehensive logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler('app.log')
    ]
)
logger = logging.getLogger(__name__)

# Try to import orchestration components
orchestrator = None
orchestrator_available = False

# Process Flow Visualization - DISABLED
# Moving functionality to container logs instead of UI
process_flow_available = False
logger.info("Process Flow Visualization disabled - functionality moved to container logs")

try:
    logger.info("Attempting to import orchestration components...")
    import sys
    sys.path.insert(0, '.')
    sys.path.insert(0, 'src')
    
    from src.agents.intent_agent import create_intent_agent
    from src.agents.synthesis_agent import create_synthesis_agent
    from src.agents.safety_agent import create_safety_agent
    from src.agents.skills_identification_agent import create_skills_identification_agent
    from src.llm_router import LLMRouter
    from src.orchestrator_engine import MVPOrchestrator
    from src.context_manager import EfficientContextManager
    from src.config import settings
    
    logger.info("βœ“ Successfully imported orchestration components")
    orchestrator_available = True
except ImportError as e:
    logger.warning(f"Could not import orchestration components: {e}")
    # Note: System will gracefully degrade if orchestrator unavailable
    # This is handled in process_message_async with proper user-facing messages

try:
    from spaces import GPU
    SPACES_GPU_AVAILABLE = True
    logger.info("HF Spaces GPU available")
except ImportError:
    # Not running on HF Spaces or spaces module not available
    SPACES_GPU_AVAILABLE = False
    GPU = None
    logger.info("Running without HF Spaces GPU")

def create_mobile_optimized_interface():
    """Create the mobile-optimized Gradio interface and return demo with components"""
    
    # Store components for wiring
    interface_components = {}
    
    with gr.Blocks(
        title="AI Research Assistant MVP",
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="gray",
            font=("Inter", "system-ui", "sans-serif")
        ),
        css="""
        /* Mobile-first responsive CSS */
        .mobile-container {
            max-width: 100vw;
            margin: 0 auto;
            padding: 0 12px;
        }
        
        /* Touch-friendly button sizing */
        .gradio-button {
            min-height: 44px !important;
            min-width: 44px !important;
            font-size: 16px !important; /* Prevents zoom on iOS */
        }
        
        /* Mobile-optimized chat interface */
        .chatbot-container {
            height: 60vh !important;
            max-height: 60vh !important;
            overflow-y: auto !important;
            -webkit-overflow-scrolling: touch !important;
        }
        
        /* Mobile input enhancements */
        .textbox-input {
            font-size: 16px !important; /* Prevents zoom */
            min-height: 44px !important;
            padding: 12px !important;
        }
        
        /* Responsive grid adjustments */
        @media (max-width: 768px) {
            .gradio-row {
                flex-direction: column !important;
                gap: 8px !important;
            }
            
            .gradio-column {
                width: 100% !important;
            }
            
            .chatbot-container {
                height: 50vh !important;
            }
        }
        
        /* Dark mode support */
        @media (prefers-color-scheme: dark) {
            body {
                background: #1a1a1a;
                color: #ffffff;
            }
        }
        
        /* Hide scrollbars but maintain functionality */
        .chatbot-container::-webkit-scrollbar {
            width: 4px;
        }
        
        /* Loading states */
        .loading-indicator {
            display: flex;
            align-items: center;
            justify-content: center;
            padding: 20px;
        }
        
        /* Mobile menu enhancements */
        .accordion-content {
            max-height: 200px !important;
            overflow-y: auto !important;
        }
        
        /* Skills Tags Styling */
        #skills_tags_container {
            padding: 8px 12px;
            background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
            border-radius: 8px;
            border: 1px solid #dee2e6;
            margin: 8px 0;
            min-height: 40px;
            display: flex;
            flex-wrap: wrap;
            align-items: center;
            gap: 6px;
        }
        
        .skill-tag {
            display: inline-block;
            background: linear-gradient(135deg, #007bff 0%, #0056b3 100%);
            color: white;
            padding: 4px 8px;
            border-radius: 12px;
            font-size: 12px;
            font-weight: 500;
            margin: 2px;
            box-shadow: 0 2px 4px rgba(0,123,255,0.2);
            transition: all 0.2s ease;
            cursor: pointer;
        }
        
        .skill-tag:hover {
            transform: translateY(-1px);
            box-shadow: 0 4px 8px rgba(0,123,255,0.3);
        }
        
        .skill-tag.high-confidence {
            background: linear-gradient(135deg, #28a745 0%, #1e7e34 100%);
        }
        
        .skill-tag.medium-confidence {
            background: linear-gradient(135deg, #ffc107 0%, #e0a800 100%);
            color: #212529;
        }
        
        .skill-tag.low-confidence {
            background: linear-gradient(135deg, #6c757d 0%, #495057 100%);
        }
        
        .skills-header {
            font-size: 11px;
            color: #6c757d;
            margin-right: 8px;
            font-weight: 600;
        }
        
        /* Dark mode support for skills */
        @media (prefers-color-scheme: dark) {
            #skills_tags_container {
                background: linear-gradient(135deg, #2d3748 0%, #1a202c 100%);
                border-color: #4a5568;
            }
            
            .skills-header {
                color: #a0aec0;
            }
        }
        """
    ) as demo:
        
        # Session Management (Mobile-Optimized)
        with gr.Column(elem_classes="mobile-container"):
            gr.Markdown("""
            # 🧠 Research Assistant
            *Academic AI with transparent reasoning*
            """)
            
            # Session Header Bar (Mobile-Friendly)
            with gr.Row():
                # User Selection Dropdown
                user_dropdown = gr.Dropdown(
                    choices=["Admin_J", "Dev_K", "Dev_H", "Dev_A", "Test_Any"],
                    value="Test_Any",
                    label="User",
                    show_label=False,
                    container=False,
                    scale=1,
                    min_width=100
                )
                interface_components['user_dropdown'] = user_dropdown
                
                session_info = gr.Textbox(
                    label="Session Info",
                    value=f"Session: {str(uuid.uuid4())[:8]} | User: Test_Any | Interactions: 0",
                    max_lines=1,
                    show_label=False,
                    container=False,
                    scale=3,
                    interactive=False
                )
                interface_components['session_info'] = session_info
                
                new_session_btn = gr.Button(
                    "πŸ”„ New",
                    size="sm",
                    variant="secondary",
                    scale=1,
                    min_width=60
                )
                interface_components['new_session_btn'] = new_session_btn
                
                menu_toggle = gr.Button(
                    "βš™οΈ",
                    size="sm",
                    variant="secondary",
                    scale=1,
                    min_width=60
                )
                interface_components['menu_toggle'] = menu_toggle
            
            # Main Chat Area (Mobile-Optimized)
            with gr.Tabs() as main_tabs:
                with gr.TabItem("πŸ’¬ Chat", id="chat_tab"):
                    chatbot = gr.Chatbot(
                        label="",
                        show_label=False,
                        height="60vh",
                        elem_classes="chatbot-container",
                        type="messages"
                    )
                    interface_components['chatbot'] = chatbot
                    
                    # Skills Identification Display (between chat and input)
                    with gr.Row(visible=False, elem_id="skills_display") as skills_display_row:
                        skills_tags = gr.HTML(
                            value="",
                            show_label=False,
                            elem_id="skills_tags_container"
                        )
                        interface_components['skills_tags'] = skills_tags
                    
                    # Mobile Input Area
                    with gr.Row():
                        message_input = gr.Textbox(
                            placeholder="Ask me anything...",
                            show_label=False,
                            max_lines=3,
                            container=False,
                            scale=4,
                            autofocus=True
                        )
                        interface_components['message_input'] = message_input
                        
                        send_btn = gr.Button(
                            "↑ Send",
                            variant="primary",
                            scale=1,
                            min_width=80
                        )
                        interface_components['send_btn'] = send_btn
                
                # Technical Details Tab (Collapsible for Mobile)
                with gr.TabItem("πŸ” Details", id="details_tab"):
                    with gr.Accordion("Reasoning Chain", open=False):
                        reasoning_display = gr.JSON(
                            label="",
                            show_label=False
                        )
                        interface_components['reasoning_display'] = reasoning_display
                    
                    with gr.Accordion("Agent Performance", open=False):
                        performance_display = gr.JSON(
                            label="",
                            show_label=False
                        )
                        interface_components['performance_display'] = performance_display
                    
                    with gr.Accordion("Session Context", open=False):
                        context_display = gr.JSON(
                            label="",
                            show_label=False
                        )
                        interface_components['context_display'] = context_display
                
                # Process Flow Tab - DISABLED
                # Process flow information is now logged to container logs instead of UI
            
            # Mobile Bottom Navigation
            with gr.Row(visible=False, elem_id="mobile_nav") as mobile_navigation:
                chat_nav_btn = gr.Button("πŸ’¬ Chat", variant="secondary", size="sm", min_width=0)
                details_nav_btn = gr.Button("πŸ” Details", variant="secondary", size="sm", min_width=0)
                settings_nav_btn = gr.Button("βš™οΈ Settings", variant="secondary", size="sm", min_width=0)
        
        # Settings Panel (Modal for Mobile)
        with gr.Column(visible=False, elem_id="settings_panel") as settings:
            interface_components['settings_panel'] = settings
            
            with gr.Accordion("Display Options", open=True):
                show_reasoning = gr.Checkbox(
                    label="Show reasoning chain",
                    value=True,
                    info="Display step-by-step reasoning"
                )
                interface_components['show_reasoning'] = show_reasoning
                
                show_agent_trace = gr.Checkbox(
                    label="Show agent execution trace",
                    value=False,
                    info="Display which agents processed your request"
                )
                interface_components['show_agent_trace'] = show_agent_trace
                
                compact_mode = gr.Checkbox(
                    label="Compact mode",
                    value=False,
                    info="Optimize for smaller screens"
                )
                interface_components['compact_mode'] = compact_mode
            
            with gr.Accordion("Performance Options", open=False):
                response_speed = gr.Radio(
                    choices=["Fast", "Balanced", "Thorough"],
                    value="Balanced",
                    label="Response Speed Preference"
                )
                interface_components['response_speed'] = response_speed
                
                cache_enabled = gr.Checkbox(
                    label="Enable context caching",
                    value=True,
                    info="Faster responses using session memory"
                )
                interface_components['cache_enabled'] = cache_enabled
            
            save_prefs_btn = gr.Button("Save Preferences", variant="primary")
            interface_components['save_prefs_btn'] = save_prefs_btn
        
        # Wire up the submit handler INSIDE the gr.Blocks context
        if 'send_btn' in interface_components and 'message_input' in interface_components and 'chatbot' in interface_components:
            # Store interface components globally for dynamic return values
            global _interface_components
            _interface_components = interface_components
            
            # Build outputs list dynamically
            outputs = _build_outputs_list(interface_components)
            
            # Include session_info in inputs to pass session ID
            inputs = [interface_components['message_input'], interface_components['chatbot']]
            if 'user_dropdown' in interface_components:
                inputs.append(interface_components['user_dropdown'])
            if 'session_info' in interface_components:
                inputs.append(interface_components['session_info'])
            
            interface_components['send_btn'].click(
                fn=chat_handler_fn,
                inputs=inputs,
                outputs=outputs
            )
            
            # Wire up New Session button
            if 'new_session_btn' in interface_components and 'session_info' in interface_components and 'user_dropdown' in interface_components:
                def new_session(user_id):
                    new_session_id = str(uuid.uuid4())[:8]
                    return f"Session: {new_session_id} | User: {user_id} | Interactions: 0"
                
                interface_components['new_session_btn'].click(
                    fn=new_session,
                    inputs=[interface_components['user_dropdown']],
                    outputs=[interface_components['session_info']]
                )
            
            # Wire up User Dropdown to update session info
            if 'user_dropdown' in interface_components and 'session_info' in interface_components:
                def update_session_info(user_id, session_text):
                    # Extract session_id from existing text
                    import re
                    match = re.search(r'Session: ([a-f0-9]+)', session_text)
                    session_id = match.group(1) if match else str(uuid.uuid4())[:8]
                    # Extract interaction count
                    match = re.search(r'Interactions: (\d+)', session_text)
                    interaction_count = match.group(1) if match else "0"
                    return f"Session: {session_id} | User: {user_id} | Interactions: {interaction_count}"
                
                interface_components['user_dropdown'].change(
                    fn=update_session_info,
                    inputs=[interface_components['user_dropdown'], interface_components['session_info']],
                    outputs=[interface_components['session_info']]
                )
            
            # Wire up Settings button to toggle settings panel
            if 'menu_toggle' in interface_components and 'settings_panel' in interface_components:
                def toggle_settings(visible):
                    return gr.update(visible=not visible)
                
                interface_components['menu_toggle'].click(
                    fn=toggle_settings,
                    inputs=[interface_components['settings_panel']],
                    outputs=[interface_components['settings_panel']]
                )
            
            # Wire up Save Preferences button
            if 'save_prefs_btn' in interface_components:
                def save_preferences(*args):
                    logger.info("Preferences saved")
                    gr.Info("Preferences saved successfully!")
                
                interface_components['save_prefs_btn'].click(
                    fn=save_preferences,
                    inputs=[
                        interface_components.get('show_reasoning', None),
                        interface_components.get('show_agent_trace', None),
                        interface_components.get('response_speed', None),
                        interface_components.get('cache_enabled', None)
                    ]
                )
            
            # Process Flow event handlers - DISABLED
            # Process flow information is now logged to container logs instead of UI
    
    return demo, interface_components

def setup_event_handlers(demo, event_handlers):
    """Setup event handlers for the interface"""
    
    # Find components by their labels or types
    components = {}
    for block in demo.blocks:
        if hasattr(block, 'label'):
            if block.label == 'Session ID':
                components['session_info'] = block
            elif hasattr(block, 'value') and 'session' in str(block.value).lower():
                components['session_id'] = block
    
    # Setup message submission handler
    try:
        # This is a simplified version - you'll need to adapt based on your actual component structure
        if hasattr(demo, 'submit'):
            demo.submit(
                fn=event_handlers.handle_message_submit,
                inputs=[components.get('message_input'), components.get('chatbot')],
                outputs=[components.get('message_input'), components.get('chatbot')]
            )
    except Exception as e:
        logger.error(f"Could not setup event handlers: {e}", exc_info=True)
        # Event handlers setup failure is logged but won't affect core chat functionality
        # Gradio interface will still work with default handlers
    
    return demo

def _generate_skills_html(identified_skills: List[Dict[str, Any]]) -> str:
    """Generate HTML for skills tags display"""
    if not identified_skills:
        return ""
    
    # Limit to top 8 skills for UI
    top_skills = identified_skills[:8]
    
    # Generate HTML with confidence-based styling
    skills_html = '<div class="skills-header">🎯 Relevant Skills:</div>'
    
    for skill in top_skills:
        skill_name = skill.get('skill', 'Unknown Skill')
        probability = skill.get('probability', 0.5)
        
        # Determine confidence class based on probability
        if probability >= 0.7:
            confidence_class = "high-confidence"
        elif probability >= 0.4:
            confidence_class = "medium-confidence"
        else:
            confidence_class = "low-confidence"
        
        # Create skill tag
        skills_html += f'<span class="skill-tag {confidence_class}" title="Probability: {probability:.1%}">{skill_name}</span>'
    
    return skills_html

def _update_skills_display(skills_html: str) -> Tuple[str, bool]:
    """Update skills display visibility and content"""
    if skills_html and len(skills_html.strip()) > 0:
        return skills_html, True  # Show skills display
    else:
        return "", False  # Hide skills display

async def process_message_async(message: str, history: Optional[List], session_id: str, user_id: str = "Test_Any") -> Tuple[List, str, dict, dict, dict, str, str]:
    """
    Process message with full orchestration system
    Returns (updated_history, empty_string, reasoning_data, performance_data, context_data, session_id, skills_html)
    
    GUARANTEES:
    - Always returns a response (never None or empty)
    - Handles all error cases gracefully
    - Provides fallback responses at every level
    - Returns metadata for Details tab
    - Returns session_id to maintain session continuity
    - Returns skills HTML for display
    """
    global orchestrator
    
    try:
        logger.info(f"Processing message: {message[:100]}")
        logger.info(f"Session ID: {session_id}")
        logger.info(f"User ID: {user_id}")
        logger.info(f"Orchestrator available: {orchestrator is not None}")
        
        # Set user_id in orchestrator for context system
        if orchestrator is not None:
            if hasattr(orchestrator, 'set_user_id'):
                orchestrator.set_user_id(session_id, user_id)
        
        if not message or not message.strip():
            logger.debug("Empty message received")
            return history if history else [], "", {}, {}, {}, session_id, ""
        
        if history is None:
            history = []
        
        new_history = list(history) if isinstance(history, list) else []
        
        # Check if this is a safety choice response (BEFORE normal processing)
        message_upper = message.strip().upper()
        is_safety_choice = message_upper in ['YES', 'NO', 'APPLY', 'KEEP', 'Y', 'N']
        
        # Check if we have a pending safety choice for this session
        if is_safety_choice and orchestrator is not None:
            # Check both _pending_choices (from app.py) and awaiting_safety_response (from orchestrator)
            pending_choice = getattr(orchestrator, '_pending_choices', {}).get(session_id)
            awaiting_response = getattr(orchestrator, 'awaiting_safety_response', {}).get(session_id, False)
            
            if pending_choice or awaiting_response:
                logger.info(f"Processing safety choice response: {message_upper} (session: {session_id})")
                
                # Determine user decision
                user_decision = message_upper in ['YES', 'APPLY', 'Y']
                
                # Process the safety choice directly (bypasses normal safety checks)
                if pending_choice:
                    choice_result = await orchestrator.handle_user_safety_decision(
                        pending_choice['choice_id'],
                        user_decision,
                        session_id
                    )
                    
                    # Clean up pending choice
                    if hasattr(orchestrator, '_pending_choices'):
                        orchestrator._pending_choices.pop(session_id, None)
                else:
                    # Fallback: if no pending choice but flag is set, skip safety check
                    logger.warning(f"Safety response flag set but no pending choice found - bypassing safety check")
                    return new_history, "", {}, {}, {}, session_id, ""
                
                # Add user message
                new_history.append({"role": "user", "content": message.strip()})
                
                # Add assistant response
                if 'error' in choice_result:
                    response = f"Error processing safety choice: {choice_result['error']}"
                else:
                    response = choice_result.get('response', choice_result.get('final_response', 'Processing complete.'))
                
                new_history.append({"role": "assistant", "content": response})
                
                # Extract metadata
                reasoning_data = {}
                performance_data = {
                    "user_choice": choice_result.get('user_choice', 'unknown'),
                    "revision_applied": choice_result.get('revision_applied', False)
                }
                context_data = {
                    "interaction_id": choice_result.get('interaction_id', 'unknown'),
                    "session_id": session_id
                }
                
                # Ensure flags are cleared
                if hasattr(orchestrator, 'awaiting_safety_response'):
                    orchestrator.awaiting_safety_response.pop(session_id, None)
                
                return new_history, "", reasoning_data, performance_data, context_data, session_id, ""
        
        # Add user message (normal flow)
        new_history.append({"role": "user", "content": message.strip()})
        
        # Initialize Details tab data
        reasoning_data = {}
        performance_data = {}
        context_data = {}
        skills_html = ""  # Initialize skills_html
        
        # GUARANTEE: Always get a response
        response = "Hello! I'm processing your request..."
        
        # Try to use orchestrator if available
        if orchestrator is not None:
            try:
                logger.info("Attempting full orchestration...")
                # Use normal processing (user choice feature is PAUSED)
                # Safety warnings are automatically appended to responses when thresholds exceeded
                result = await orchestrator.process_request(
                    session_id=session_id,
                    user_input=message.strip()
                )
                
                # Check if result indicates this was a safety response (should have been handled above)
                if result.get('is_safety_response', False):
                    logger.warning("Safety response detected in normal processing - should have been handled earlier")
                    # Skip further processing
                    return new_history, "", {}, {}, {}, session_id, ""
                
                # USER CHOICE FEATURE PAUSED - Warnings automatically appended to responses
                # No reiteration/revision happens - responses are returned with warnings when thresholds exceeded
                logger.info("Processing response - safety warnings appended automatically if needed (no revisions)")
                
                # Extract response from result with multiple fallback checks
                if isinstance(result, dict):
                    # Extract the text response (not the dict)
                    response = (
                        result.get('response') or 
                        result.get('final_response') or 
                        result.get('safety_checked_response') or
                        result.get('original_response') or
                        str(result.get('result', ''))
                    )
                    
                    # Extract metadata for Details tab with enhanced reasoning chain
                    reasoning_data = result.get('metadata', {}).get('reasoning_chain', {
                        "chain_of_thought": {},
                        "alternative_paths": [],
                        "uncertainty_areas": [],
                        "evidence_sources": [],
                        "confidence_calibration": {}
                    })
                    
                    # Ensure we have the enhanced structure even if orchestrator didn't provide it
                    if not reasoning_data.get('chain_of_thought'):
                        reasoning_data = {
                            "chain_of_thought": {
                                "step_1": {
                                    "hypothesis": "Processing user request",
                                    "evidence": [f"User input: {message[:50]}..."],
                                    "confidence": 0.7,
                                    "reasoning": "Basic request processing"
                                }
                            },
                            "alternative_paths": [],
                            "uncertainty_areas": [],
                            "evidence_sources": [],
                            "confidence_calibration": {"overall_confidence": 0.7}
                        }
                    
                    performance_data = {
                        "agent_trace": result.get('agent_trace', []),
                        "processing_time": result.get('metadata', {}).get('processing_time', 0),
                        "token_count": result.get('metadata', {}).get('token_count', 0),
                        "confidence_score": result.get('confidence_score', 0.7),
                        "agents_used": result.get('metadata', {}).get('agents_used', [])
                    }
                    
                    context_data = {
                        "interaction_id": result.get('interaction_id', 'unknown'),
                        "session_id": session_id,
                        "timestamp": result.get('timestamp', ''),
                        "warnings": result.get('metadata', {}).get('warnings', [])
                    }
                    
                    # Extract skills data for UI display
                    skills_html = ""
                    skills_result = result.get('metadata', {}).get('skills_result', {})
                    if skills_result and skills_result.get('identified_skills'):
                        skills_html = _generate_skills_html(skills_result['identified_skills'])
                else:
                    response = str(result) if result else "Processing complete."
                
                # Final safety check - ensure response is not empty (only for actual errors)
                # Handle both string and dict types
                if isinstance(response, dict):
                    response = str(response.get('content', response))
                if not response or (isinstance(response, str) and len(response.strip()) == 0):
                    # This should only happen if LLM API completely fails - log it
                    logger.warning(f"Empty response received from orchestrator for message: {message[:50]}...")
                    response = (
                        f"I received your message about '{message[:50]}...'. "
                        f"I'm processing your request and working on providing you with a comprehensive answer. "
                        f"Please wait a moment and try again if needed."
                    )
                
                logger.info(f"Orchestrator returned response (length: {len(response)})")
                
            except Exception as orch_error:
                logger.error(f"Orchestrator error with safety revision: {orch_error}", exc_info=True)
                try:
                    # Graceful degradation to original orchestrator method
                    logger.info("Falling back to original orchestrator method...")
                    result = await orchestrator.process_request(
                        session_id=session_id,
                        user_input=message.strip()
                    )
                    result['fallback_used'] = True
                    result['revision_attempts'] = 0
                    logger.info("βœ“ Fallback to original orchestrator successful")
                    
                    # Extract response from fallback result
                    response = (
                        result.get('response') or 
                        result.get('final_response') or 
                        result.get('safety_checked_response') or
                        result.get('original_response') or
                        str(result.get('result', ''))
                    )
                    
                    # Extract metadata from fallback result
                    reasoning_data = result.get('metadata', {}).get('reasoning_chain', {
                        "chain_of_thought": {},
                        "alternative_paths": [],
                        "uncertainty_areas": [],
                        "evidence_sources": [],
                        "confidence_calibration": {}
                    })
                    
                    performance_data = {
                        "agent_trace": result.get('agent_trace', []),
                        "processing_time": result.get('metadata', {}).get('processing_time', 0),
                        "token_count": result.get('metadata', {}).get('token_count', 0),
                        "confidence_score": result.get('confidence_score', 0.7),
                        "agents_used": result.get('metadata', {}).get('agents_used', [])
                    }
                    
                    context_data = {
                        "interaction_id": result.get('interaction_id', 'unknown'),
                        "session_id": session_id,
                        "timestamp": result.get('timestamp', ''),
                        "warnings": result.get('metadata', {}).get('warnings', [])
                    }
                    
                    # Extract skills data from fallback
                    skills_html = ""
                    skills_result = result.get('metadata', {}).get('skills_result', {})
                    if skills_result and skills_result.get('identified_skills'):
                        skills_html = _generate_skills_html(skills_result['identified_skills'])
                        
                except Exception as fallback_error:
                    logger.error(f"Fallback orchestrator also failed: {fallback_error}", exc_info=True)
                    # Fallback response with error info and enhanced reasoning
                    response = f"I'm experiencing some technical difficulties. Your message was: '{message[:100]}...' Please try again or rephrase your question."
                    reasoning_data = {
                        "chain_of_thought": {
                            "step_1": {
                                "hypothesis": "System encountered an error during processing",
                                "evidence": [f"Error: {str(orch_error)[:100]}..."],
                                "confidence": 0.3,
                                "reasoning": "Orchestrator failure - fallback mode activated"
                            }
                        },
                        "alternative_paths": [],
                        "uncertainty_areas": [
                            {
                                "aspect": "System reliability",
                                "confidence": 0.3,
                                "mitigation": "Error handling and graceful degradation"
                            }
                        ],
                        "evidence_sources": [],
                        "confidence_calibration": {"overall_confidence": 0.3, "error_mode": True}
                    }
                    performance_data = {}
                    context_data = {}
                    skills_html = ""
        else:
            # System initialization message with enhanced reasoning
            logger.info("Orchestrator not yet available")
            response = f"Hello! I received your message about: '{message}'.\n\nThe orchestration system is initializing. Your question is important and I'll provide a comprehensive answer shortly."
            reasoning_data = {
                "chain_of_thought": {
                    "step_1": {
                        "hypothesis": "System is initializing and not yet ready",
                        "evidence": ["Orchestrator not available", f"User input: {message[:50]}..."],
                        "confidence": 0.5,
                        "reasoning": "System startup phase - components loading"
                    }
                },
                "alternative_paths": [],
                "uncertainty_areas": [
                    {
                        "aspect": "System readiness",
                        "confidence": 0.5,
                        "mitigation": "Graceful initialization message"
                    }
                ],
                "evidence_sources": [],
                "confidence_calibration": {"overall_confidence": 0.5, "initialization_mode": True}
            }
            performance_data = {}
            context_data = {}
            skills_html = ""  # Initialize skills_html for orchestrator not available case
        
        # Add assistant response
        new_history.append({"role": "assistant", "content": response})
        logger.info("βœ“ Message processing complete")
        
        return new_history, "", reasoning_data, performance_data, context_data, session_id, skills_html
        
    except Exception as e:
        # FINAL FALLBACK: Always return something to user with enhanced reasoning
        logger.error(f"Error in process_message_async: {e}", exc_info=True)
        
        # Create error history with helpful message
        error_history = list(history) if history else []
        error_history.append({"role": "user", "content": message})
        
        # User-friendly error message
        error_message = (
            f"I encountered a technical issue processing your message: '{message[:50]}...'. "
            f"Please try rephrasing your question or contact support if this persists."
        )
        error_history.append({"role": "assistant", "content": error_message})
        
        # Enhanced reasoning for error case
        reasoning_data = {
            "chain_of_thought": {
                "step_1": {
                    "hypothesis": "Critical system error occurred",
                    "evidence": [f"Exception: {str(e)[:100]}...", f"User input: {message[:50]}..."],
                    "confidence": 0.2,
                    "reasoning": "System error handling - final fallback activated"
                }
            },
            "alternative_paths": [],
            "uncertainty_areas": [
                {
                    "aspect": "System stability",
                    "confidence": 0.2,
                    "mitigation": "Error logging and user notification"
                }
            ],
            "evidence_sources": [],
            "confidence_calibration": {"overall_confidence": 0.2, "critical_error": True}
        }
        
        return error_history, "", reasoning_data, {}, {}, session_id, ""

# Global variable to store interface components for dynamic return values
_interface_components = {}

def _build_outputs_list(interface_components: dict) -> list:
    """
    Build outputs list dynamically based on available interface components
    """
    outputs = [interface_components['chatbot'], interface_components['message_input']]
    
    # Add Details tab components
    if 'reasoning_display' in interface_components:
        outputs.append(interface_components['reasoning_display'])
    if 'performance_display' in interface_components:
        outputs.append(interface_components['performance_display'])
    if 'context_display' in interface_components:
        outputs.append(interface_components['context_display'])
    if 'session_info' in interface_components:
        outputs.append(interface_components['session_info'])
    if 'skills_tags' in interface_components:
        outputs.append(interface_components['skills_tags'])
    
    # Process Flow outputs - DISABLED
    # Process flow information is now logged to container logs instead of UI
    
    return outputs

def _build_dynamic_return_values(result: tuple, skills_content: str, interface_components: dict) -> tuple:
    """
    Build return values dynamically based on available interface components
    This ensures the return values match the outputs list exactly
    """
    return_values = []
    
    # Base components (always present)
    return_values.extend([
        result[0],  # chatbot (history)
        result[1],  # message_input (empty_string)
    ])
    
    # Add Details tab components
    if 'reasoning_display' in interface_components:
        return_values.append(result[2])  # reasoning_data
    if 'performance_display' in interface_components:
        return_values.append(result[3])  # performance_data
    if 'context_display' in interface_components:
        return_values.append(result[4])  # context_data
    if 'session_info' in interface_components:
        return_values.append(result[5])  # session_id
    if 'skills_tags' in interface_components:
        return_values.append(skills_content)  # skills_content
    
    # Process Flow outputs - DISABLED
    # Process flow information is now logged to container logs instead of UI
    
    return tuple(return_values)

def process_message(message: str, history: Optional[List], session_id: Optional[str] = None, user_id: str = "Test_Any") -> tuple:
    """
    Synchronous wrapper for async processing
    Returns dynamic tuple based on available interface components
    """
    import asyncio
    
    # Use provided session_id or generate a new one
    if not session_id:
        session_id = str(uuid.uuid4())[:8]
    
    try:
        # Run async processing
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        result = loop.run_until_complete(process_message_async(message, history, session_id, user_id))
        
        # Extract skills_html from result and determine visibility
        skills_html = result[6]
        skills_content, skills_visible = _update_skills_display(skills_html)
        
        # Return dynamic values based on available components
        return _build_dynamic_return_values(result, skills_content, _interface_components)
    except Exception as e:
        logger.error(f"Error in process_message: {e}", exc_info=True)
        error_history = list(history) if history else []
        error_history.append({"role": "user", "content": message})
        error_history.append({"role": "assistant", "content": f"Error: {str(e)}"})
        
        # Enhanced reasoning for sync error case
        reasoning_data = {
            "chain_of_thought": {
                "step_1": {
                    "hypothesis": "Synchronous processing error",
                    "evidence": [f"Sync error: {str(e)[:100]}...", f"User input: {message[:50]}..."],
                    "confidence": 0.2,
                    "reasoning": "Synchronous wrapper error handling"
                }
            },
            "alternative_paths": [],
            "uncertainty_areas": [
                {
                    "aspect": "Processing reliability",
                    "confidence": 0.2,
                    "mitigation": "Error logging and fallback response"
                }
            ],
            "evidence_sources": [],
            "confidence_calibration": {"overall_confidence": 0.2, "sync_error": True}
        }
        
        # Return dynamic values for error case
        error_result = (error_history, "", reasoning_data, {}, {}, session_id, "")
        return _build_dynamic_return_values(error_result, "", _interface_components)

# Decorate the chat handler with GPU if available
if SPACES_GPU_AVAILABLE and GPU is not None:
    @GPU  # This decorator is detected by HF Spaces for ZeroGPU allocation
    def gpu_chat_handler(message, history, user_id="Test_Any", session_text=""):
        """Handle chat messages with GPU support"""
        # Extract session_id from session_text or generate new one
        import re
        match = re.search(r'Session: ([a-f0-9]+)', session_text) if session_text else None
        session_id = match.group(1) if match else str(uuid.uuid4())[:8]
        result = process_message(message, history, session_id, user_id)
        # Return all 15 values directly
        return result
    
    def safe_gpu_chat_handler(message, history, user_id="Test_Any", session_text=""):
        """
        Wrapper to catch any exceptions from GPU decorator cleanup phase.
        This prevents exceptions during device release from propagating to Gradio UI.
        """
        try:
            # Call the GPU-decorated handler
            return gpu_chat_handler(message, history, user_id, session_text)
        except Exception as e:
            # If decorator cleanup raises an exception, catch it and recompute result
            # This is safe because the actual processing already completed successfully
            logger.warning(
                f"GPU decorator cleanup error caught (non-fatal): {e}. "
                f"Recomputing result to avoid UI error propagation."
            )
            # Extract session_id from session_text or generate new one
            import re
            match = re.search(r'Session: ([a-f0-9]+)', session_text) if session_text else None
            session_id = match.group(1) if match else str(uuid.uuid4())[:8]
            # Recompute result without GPU decorator (safe fallback)
            result = process_message(message, history, session_id, user_id)
            return result
    
    chat_handler_fn = safe_gpu_chat_handler
else:
    def chat_handler_wrapper(message, history, user_id="Test_Any", session_text=""):
        """Wrapper to handle session ID - Process Flow functionality moved to logs"""
        # Extract session_id from session_text or generate new one
        import re
        match = re.search(r'Session: ([a-f0-9]+)', session_text) if session_text else None
        session_id = match.group(1) if match else str(uuid.uuid4())[:8]
        result = process_message(message, history, session_id, user_id)
        # Extract skills_html from result and determine visibility
        skills_html = result[6]
        skills_content, skills_visible = _update_skills_display(skills_html)
        
        # Update session info with interaction count
        try:
            context_data = result[4]
            # Get interaction count from context or increment
            import sqlite3
            import re
            conn = sqlite3.connect("sessions.db")
            cursor = conn.cursor()
            cursor.execute("""
                SELECT COUNT(*) FROM interaction_contexts WHERE session_id = ?
            """, (session_id,))
            interaction_count = cursor.fetchone()[0]
            conn.close()
        except Exception:
            interaction_count = 0
        
        # Update session_info if available
        updated_session_info = f"Session: {session_id} | User: {user_id} | Interactions: {interaction_count}"
        
        # Log process flow information to container logs instead of UI
        try:
            # Extract data for process flow logging
            reasoning_data = result[2]
            performance_data = result[3]
            context_data = result[4]
            
            # Log comprehensive process flow information
            logger.info("=" * 60)
            logger.info("PROCESS FLOW LOGGING")
            logger.info("=" * 60)
            logger.info(f"Session ID: {session_id}")
            logger.info(f"User ID: {user_id}")
            logger.info(f"User Input: {message[:100]}...")
            logger.info(f"Processing Time: {performance_data.get('processing_time', 0):.2f}s")
            
            # Log intent recognition details
            if reasoning_data.get("chain_of_thought"):
                logger.info("Intent Recognition:")
                logger.info(f"  - Primary Intent: {reasoning_data.get('chain_of_thought', {}).get('step_1', {}).get('hypothesis', 'unknown')}")
                logger.info(f"  - Confidence: {reasoning_data.get('confidence_calibration', {}).get('overall_confidence', 0.7):.2f}")
            
            # Log performance metrics
            logger.info("Performance Metrics:")
            logger.info(f"  - Agent Trace: {performance_data.get('agent_trace', [])}")
            logger.info(f"  - Token Count: {performance_data.get('token_count', 0)}")
            logger.info(f"  - Confidence Score: {performance_data.get('confidence_score', 0.7):.2f}")
            logger.info(f"  - Agents Used: {performance_data.get('agents_used', [])}")
            
            # Log context information
            logger.info("Context Information:")
            logger.info(f"  - User ID: {user_id}")
            logger.info(f"  - Session ID: {session_id}")
            logger.info(f"  - Interaction ID: {context_data.get('interaction_id', 'unknown')}")
            logger.info(f"  - Interaction Count: {interaction_count}")
            logger.info(f"  - Timestamp: {context_data.get('timestamp', '')}")
            logger.info(f"  - Warnings: {context_data.get('warnings', [])}")
            
            # Log skills identification if available
            if skills_html and len(skills_html.strip()) > 0:
                logger.info("Skills Identification:")
                logger.info(f"  - Skills HTML: {skills_html}")
            
            logger.info("=" * 60)
            logger.info("END PROCESS FLOW LOGGING")
            logger.info("=" * 60)
            
        except Exception as e:
            logger.error(f"Error logging process flow: {e}")
        
        # Build return values with updated session info
        return_values = list(_build_dynamic_return_values(result, skills_content, _interface_components))
        # Update session_info in return values if present
        if 'session_info' in _interface_components and len(return_values) > 2:
            # Find session_info index in outputs
            outputs_list = _build_outputs_list(_interface_components)
            if 'session_info' in _interface_components:
                try:
                    session_info_idx = outputs_list.index(_interface_components['session_info'])
                    if session_info_idx < len(return_values):
                        return_values[session_info_idx] = updated_session_info
                except (ValueError, IndexError):
                    pass
        
        return tuple(return_values)
    chat_handler_fn = chat_handler_wrapper

# Initialize orchestrator on module load
def initialize_orchestrator():
    """Initialize the orchestration system with logging"""
    global orchestrator
    
    if not orchestrator_available:
        logger.info("Orchestrator components not available, skipping initialization")
        return
    
    try:
        logger.info("=" * 60)
        logger.info("INITIALIZING ORCHESTRATION SYSTEM")
        logger.info("=" * 60)
        
        # Get HF token
        hf_token = os.getenv('HF_TOKEN', '')
        if not hf_token:
            logger.warning("HF_TOKEN not found in environment")
        
        # Initialize LLM Router
        logger.info("Step 1/6: Initializing LLM Router...")
        llm_router = LLMRouter(hf_token)
        logger.info("βœ“ LLM Router initialized")
        
        # Initialize Agents
        logger.info("Step 2/6: Initializing Agents...")
        agents = {
            'intent_recognition': create_intent_agent(llm_router),
            'response_synthesis': create_synthesis_agent(llm_router),
            'safety_check': create_safety_agent(llm_router),
        }
        
        # Add skills identification agent
        skills_agent = create_skills_identification_agent(llm_router)
        agents['skills_identification'] = skills_agent
        logger.info("βœ“ Skills identification agent initialized")
        
        logger.info(f"βœ“ Initialized {len(agents)} agents")
        
        # Initialize Context Manager (with LLM router for context generation)
        logger.info("Step 3/6: Initializing Context Manager...")
        context_manager = EfficientContextManager(llm_router=llm_router)
        logger.info("βœ“ Context Manager initialized")
        
        # Initialize Orchestrator
        logger.info("Step 4/6: Initializing Orchestrator...")
        orchestrator = MVPOrchestrator(llm_router, context_manager, agents)
        logger.info("βœ“ Orchestrator initialized")
        
        logger.info("=" * 60)
        logger.info("ORCHESTRATION SYSTEM READY")
        logger.info("=" * 60)
        
    except Exception as e:
        logger.error(f"Failed to initialize orchestrator: {e}", exc_info=True)
        orchestrator = None

# Try to initialize orchestrator
initialize_orchestrator()

if __name__ == "__main__":
    logger.info("=" * 60)
    logger.info("STARTING APP")
    logger.info("=" * 60)
    
    demo, components = create_mobile_optimized_interface()
    
    logger.info("βœ“ Interface created")
    logger.info(f"Orchestrator available: {orchestrator is not None}")
    
    # Launch the app
    logger.info("=" * 60)
    logger.info("LAUNCHING GRADIO APP")
    logger.info("=" * 60)
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )