File size: 32,941 Bytes
6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c e3fd5ce 6b92e3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 |
# Research AI Assistant - API Documentation
**Version:** 1.0.0
**Base URL:** `https://huggingface.co/spaces/JatinAutonomousLabs/Research_AI_Assistant`
**API Type:** Gradio Client API
**Last Updated:** December 2024
---
## Table of Contents
1. [Overview](#overview)
2. [Getting Started](#getting-started)
3. [Authentication](#authentication)
4. [API Endpoints](#api-endpoints)
5. [Error Handling](#error-handling)
6. [Code Examples](#code-examples)
7. [Integration Guide](#integration-guide)
8. [Testing](#testing)
9. [Rate Limits & Best Practices](#rate-limits--best-practices)
10. [Support & Troubleshooting](#support--troubleshooting)
---
## Overview
The Research AI Assistant provides a RESTful-like API interface through Gradio's client library. All endpoints are accessible via the `gradio_client` Python package or HTTP requests.
### Key Features
- **Chat Interface**: Interactive conversation with AI assistant
- **Session Management**: Create and manage conversation sessions
- **Context Control**: Toggle between fresh and relevant context modes
- **Preferences**: Save and manage user preferences
- **Settings Control**: Toggle UI settings panel
### Response Format
All endpoints return data in standardized formats:
- **Chat endpoints**: Return tuples matching Gradio component outputs
- **Other endpoints**: Return strings or dictionaries
- **Errors**: Return standardized error messages with metadata
---
## Getting Started
### Installation
```bash
pip install gradio_client
```
### Basic Setup
```python
from gradio_client import Client
# Initialize client
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
# Or for private spaces (requires HF token)
client = Client(
"JatinAutonomousLabs/Research_AI_Assistant",
hf_token="your_hf_token_here"
)
```
---
## Authentication
### Public Space Access
Public spaces require no authentication:
```python
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
```
### Private Space Access
For private spaces, pass your Hugging Face token:
```python
client = Client(
"JatinAutonomousLabs/Research_AI_Assistant",
hf_token=os.getenv("HF_TOKEN")
)
```
### Token Management
1. Get token from: https://huggingface.co/settings/tokens
2. Store securely (environment variables recommended)
3. Never commit tokens to version control
---
## User Management
### Base User
- `Admin_J` is the base/default API user
- Used when no `user_id` is provided or invalid format is provided
### Dynamic User Creation
The API supports dynamic user creation - any valid format `user_id` is automatically accepted and created in the database.
**Valid Format:**
- Alphanumeric characters + underscore only
- Length: 1-50 characters
- Pattern: `^[a-zA-Z0-9_]{1,50}$`
- Examples: `User123`, `External_API`, `MyUser_2024`, `API_Client_01`
**Auto-Creation:**
- New users are automatically inserted into the `user_contexts` database table on first use
- No manual user registration required
- User information is maintained by the backend database
**Validation:**
- Valid formats are accepted and auto-created
- Invalid formats default to `Admin_J`
- Database automatically maintains user information
### UI Restriction
- The HuggingFace Spaces UI is restricted to `ADMINONLY` user only
- Dynamic user creation is available **only via API calls**
- UI users cannot use dynamic user IDs
---
## API Endpoints
### 1. Chat Handler - `/safe_gpu_chat_handler`
Process user messages and get AI responses.
#### Endpoint Details
- **API Name:** `/safe_gpu_chat_handler`
- **Method:** POST (via Gradio client)
- **Description:** Main chat interface that processes user messages and returns AI responses with metadata
#### Request Parameters
| Parameter | Type | Required | Default | Description |
|-----------|------|----------|---------|-------------|
| `message` | `str` | Yes | - | User message (max 10,000 characters) |
| `history` | `list[dict]` | No | `[]` | Chat history in Gradio format |
| `user_id` | `str` | No | `"Admin_J"` | User identifier. Base user is `Admin_J`. Any valid format user_id (alphanumeric + underscore, 1-50 chars) is accepted and automatically created in the database. |
| `session_text` | `str` | No | `"Session: ... \| User: ... \| Interactions: 0"` | Session information string |
#### Response Structure
Returns a tuple of **7 elements**:
```python
(
chatbot_history, # list[dict] - Updated chat history
message_input, # str - Empty string (cleared after send)
reasoning_data, # dict - Chain of thought and reasoning
performance_data, # dict - Agent trace, token count, timing
context_data, # dict - Session context, interaction ID
session_info, # str - Updated session information
skills_html # str - HTML for identified skills display
)
```
#### Response Format Details
**1. `chatbot_history` (list[dict])**
```python
[
{
"role": "user",
"content": "What is machine learning?"
},
{
"role": "assistant",
"content": "Machine learning is a subset of artificial intelligence..."
}
]
```
**2. `reasoning_data` (dict)**
```python
{
"chain_of_thought": {
"step_1": {
"hypothesis": "User intent classification",
"evidence": ["Keywords detected", "Context analyzed"],
"confidence": 0.85,
"reasoning": "Intent identified as information_request"
}
},
"confidence_calibration": {
"overall_confidence": 0.85,
"calibration_method": "temperature_scaling"
}
}
```
**3. `performance_data` (dict)**
```python
{
"agent_trace": [
{"agent": "intent_recognition", "duration": 0.234, "status": "success"},
{"agent": "response_synthesis", "duration": 1.456, "status": "success"}
],
"token_count": 1250,
"processing_time": 2.34,
"confidence_score": 0.85,
"agents_used": ["intent_recognition", "response_synthesis"]
}
```
**4. `context_data` (dict)**
```python
{
"interaction_id": "uuid-string",
"session_id": "abc12345",
"timestamp": "2024-12-28T10:30:00",
"warnings": [],
"context_mode": "relevant"
}
```
**5. `session_info` (str)**
```python
"Session: abc12345 | User: Admin_J | Interactions: 5"
```
**6. `skills_html` (str)**
```html
"<div class='skills-header'>π― Relevant Skills:</div>
<span class='skill-tag high-confidence'>Machine Learning</span>
<span class='skill-tag medium-confidence'>Python</span>"
```
#### Code Example
```python
from gradio_client import Client
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
# Make chat request (using base Admin_J user)
result = client.predict(
message="Explain quantum computing in simple terms",
history=[],
user_id="Admin_J",
session_text="Session: abc12345 | User: Admin_J | Interactions: 0",
api_name="/safe_gpu_chat_handler"
)
# Make chat request (using dynamic user - auto-created)
result = client.predict(
message="What is machine learning?",
history=[],
user_id="MyNewUser_123", # New user - automatically created in DB
session_text="Session: abc12345 | User: MyNewUser_123 | Interactions: 0",
api_name="/safe_gpu_chat_handler"
)
# Unpack results
chatbot_history, message_input, reasoning, performance, context, session_info, skills = result
# Access response
latest_message = chatbot_history[-1]["content"]
print(f"Assistant: {latest_message}")
# Access metadata
processing_time = performance.get("processing_time", 0)
print(f"Response time: {processing_time:.2f}s")
```
#### Validation Rules
- **Message**: Must be non-empty string, max 10,000 characters
- **User ID**:
- Base user: `Admin_J` (default)
- Dynamic users: Any alphanumeric + underscore format (1-50 characters)
- New users are automatically created in the database on first use
- Invalid formats default to `Admin_J`
- Format validation: `^[a-zA-Z0-9_]{1,50}$`
- **History**: Must be list (empty list if None)
- **Session Text**: Format: `"Session: <8-char-id> | User: <user_id> | Interactions: <count>"`
#### Error Responses
If validation fails or processing errors occur:
```python
{
"error": "Message cannot be empty" # or other error message
}
```
Error responses maintain the same tuple structure with error information in metadata fields.
---
### 2. New Session - `/new_session`
Create a new conversation session.
#### Endpoint Details
- **API Name:** `/new_session`
- **Method:** POST (via Gradio client)
- **Description:** Creates a new session ID and initializes it in the database
#### Request Parameters
| Parameter | Type | Required | Default | Description |
|-----------|------|----------|---------|-------------|
| `user_id` | `str` | No | `"Admin_J"` | User identifier. Base user is `Admin_J`. Any valid format user_id is accepted and automatically created in the database. |
#### Response
Returns a single string:
```python
"Session: abc12345 | User: Admin_J | Interactions: 0"
```
#### Code Example
```python
result = client.predict(
user_id="Admin_J",
api_name="/new_session"
)
session_info = result
print(session_info) # "Session: xyz67890 | User: Admin_J | Interactions: 0"
```
#### Behavior
- Generates new 8-character hexadecimal session ID
- Validates and normalizes user_id (defaults to `Admin_J` if invalid)
- Auto-creates new users in database on first use
- Initializes session in database via context_manager
- Returns formatted session info string
- Continues execution even if database initialization fails
---
### 3. Update Session Info - `/update_session_info`
Update session metadata (typically called when user changes).
#### Endpoint Details
- **API Name:** `/update_session_info`
- **Method:** POST (via Gradio client)
- **Description:** Updates session information, typically when user_id changes
#### Request Parameters
| Parameter | Type | Required | Default | Description |
|-----------|------|----------|---------|-------------|
| `user_id` | `str` | No | `"Admin_J"` | New user identifier. Base user is `Admin_J`. Any valid format user_id is accepted and automatically created in the database. |
| `session_text` | `str` | No | `"Session: ... \| User: ... \| Interactions: 0"` | Current session text |
#### Response
Returns updated session info string:
```python
"Session: abc12345 | User: Admin_J | Interactions: 5"
```
#### Code Example
```python
result = client.predict(
user_id="Admin_J",
session_text="Session: abc12345 | User: Admin_J | Interactions: 3",
api_name="/update_session_info"
)
updated_session = result
print(updated_session) # "Session: abc12345 | User: Admin_J | Interactions: 3"
```
#### Important Notes
- **Session Continuity**: Never generates new session ID
- **Interaction Count**: Fetches actual count from database
- **Preservation**: Returns original session_text if parsing fails
---
### 4. Toggle Settings - `/toggle_settings`
Toggle the settings panel visibility.
#### Endpoint Details
- **API Name:** `/toggle_settings`
- **Method:** POST (via Gradio client)
- **Description:** Toggles the settings panel visibility state
#### Request Parameters
None required.
#### Response
Returns Gradio update object (handled internally by client).
#### Code Example
```python
client.predict(
api_name="/toggle_settings"
)
```
#### Behavior
- Uses global state tracking (`_settings_panel_visible`)
- Toggles between visible/hidden states
- Falls back to visible on error
---
### 5. Toggle Settings from Nav - `/toggle_settings_from_nav`
Toggle settings panel from mobile navigation.
#### Endpoint Details
- **API Name:** `/toggle_settings_from_nav`
- **Method:** POST (via Gradio client)
- **Description:** Same as `/toggle_settings` but triggered from mobile nav
#### Request Parameters
None required.
#### Response
Returns Gradio update object.
#### Code Example
```python
client.predict(
api_name="/toggle_settings_from_nav"
)
```
---
### 6. Handle Mode Change - `/handle_mode_change`
Change context mode (Fresh or Relevant).
#### Endpoint Details
- **API Name:** `/handle_mode_change`
- **Method:** POST (via Gradio client)
- **Description:** Updates the context mode for the current session
#### Request Parameters
| Parameter | Type | Required | Default | Description |
|-----------|------|----------|---------|-------------|
| `mode` | `Literal['fresh', 'relevant']` | Yes | `"fresh"` | Context mode: `'fresh'` = no user context, `'relevant'` = only relevant context |
| `session_id_text` | `str` | Yes | `"Session: ... \| User: ... \| Interactions: 0"` | Session information string |
#### Response
Returns status message string:
```python
"*Current: Fresh Context*" # or "*Current: Relevant Context*"
```
#### Code Example
```python
result = client.predict(
mode="relevant",
session_id_text="Session: abc12345 | User: Admin_J | Interactions: 3",
api_name="/handle_mode_change"
)
status = result
print(status) # "*Current: Relevant Context*"
```
#### Mode Descriptions
- **`fresh`**: Each response generated without user context from previous sessions
- **`relevant`**: System identifies and includes only relevant past discussions related to current topic
#### Validation
- Invalid mode values default to `'fresh'`
- Returns error message if session ID extraction fails
---
### 7. Save Preferences - `/save_preferences`
Save user preferences to database.
#### Endpoint Details
- **API Name:** `/save_preferences`
- **Method:** POST (via Gradio client)
- **Description:** Saves user preferences with database persistence
#### Request Parameters
| Parameter | Type | Required | Default | Description |
|-----------|------|----------|---------|-------------|
| `param_0` | `bool` | No | `True` | Show reasoning chain |
| `param_1` | `bool` | No | `False` | Show agent execution trace |
| `param_2` | `Literal['Fast', 'Balanced', 'Thorough']` | No | `"Balanced"` | Response speed preference |
| `param_3` | `bool` | No | `True` | Enable context caching |
#### Response
Returns status dictionary:
```python
{
"status": "success", # or "partial" if cache-only
"message": "Preferences saved"
}
```
#### Code Example
```python
result = client.predict(
param_0=True, # show_reasoning
param_1=False, # show_agent_trace
param_2="Fast", # response_speed
param_3=True, # cache_enabled
api_name="/save_preferences"
)
status = result["status"]
message = result["message"]
```
#### Preferences Schema
Preferences are stored as JSON:
```json
{
"show_reasoning": true,
"show_agent_trace": false,
"response_speed": "Fast",
"cache_enabled": true,
"timestamp": "2024-12-28T10:30:00.123456"
}
```
#### Storage
- **Primary**: Database table `user_preferences`
- **Fallback**: In-memory cache (if database unavailable)
- **Scope**: Session-specific or global (if no session_id)
---
## Error Handling
### Error Response Format
All endpoints return standardized error information:
```python
# Chat endpoints - errors in metadata
{
"error": "Error message here",
"type": "validation_error" | "processing_error" | "database_error"
}
# Other endpoints - error strings or error dictionaries
"*Error: Invalid session information*"
```
### Error Types
#### 1. Validation Errors
**Cause**: Invalid input parameters
**HTTP Equivalent**: 400 Bad Request
**Recovery**: Fix input parameters and retry
```python
# Example
{
"error": "Message cannot be empty",
"type": "validation_error"
}
```
#### 2. Processing Errors
**Cause**: Internal processing failures
**HTTP Equivalent**: 500 Internal Server Error
**Recovery**: Retry request, check system status
```python
# Example
{
"error": "Processing error: LLM API timeout",
"type": "processing_error"
}
```
#### 3. Database Errors
**Cause**: Database connection or query failures
**HTTP Equivalent**: 503 Service Unavailable
**Recovery**: System falls back to in-memory cache, retry if needed
```python
# Example
{
"error": "Failed to save preferences to database",
"type": "database_error",
"fallback": "saved_to_cache"
}
```
### Error Handling Best Practices
```python
from gradio_client import Client
import time
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
def safe_chat_request(message, history, max_retries=3):
"""Chat request with retry logic"""
for attempt in range(max_retries):
try:
result = client.predict(
message=message,
history=history,
user_id="Admin_J",
session_text="Session: abc12345 | User: Admin_J | Interactions: 0",
api_name="/safe_gpu_chat_handler"
)
# Check for errors in metadata
if isinstance(result[3], dict) and "error" in result[3]:
error_msg = result[3]["error"]
if "timeout" in error_msg.lower() and attempt < max_retries - 1:
time.sleep(2 ** attempt) # Exponential backoff
continue
raise Exception(error_msg)
return result
except Exception as e:
if attempt == max_retries - 1:
raise
time.sleep(2 ** attempt)
raise Exception("Max retries exceeded")
```
---
## Code Examples
### Complete Integration Example
```python
from gradio_client import Client
import os
from typing import List, Dict, Optional
class ResearchAIAssistant:
"""Wrapper class for Research AI Assistant API"""
def __init__(self, hf_token: Optional[str] = None):
"""Initialize client"""
self.client = Client(
"JatinAutonomousLabs/Research_AI_Assistant",
hf_token=hf_token or os.getenv("HF_TOKEN")
)
self.session_info = None
self.user_id = "Admin_J"
self.chat_history = []
def create_session(self, user_id: str = "Admin_J") -> str:
"""Create new session"""
self.user_id = user_id
self.session_info = self.client.predict(
user_id=user_id,
api_name="/new_session"
)
self.chat_history = []
return self.session_info
def send_message(self, message: str) -> Dict:
"""Send message and get response"""
if not self.session_info:
self.create_session()
result = self.client.predict(
message=message,
history=self.chat_history,
user_id=self.user_id,
session_text=self.session_info,
api_name="/safe_gpu_chat_handler"
)
# Unpack results
history, _, reasoning, performance, context, session_info, skills = result
# Update state
self.chat_history = history
self.session_info = session_info
return {
"response": history[-1]["content"] if history else "",
"reasoning": reasoning,
"performance": performance,
"context": context,
"skills": skills
}
def set_context_mode(self, mode: str) -> str:
"""Change context mode"""
if not self.session_info:
raise ValueError("No active session")
result = self.client.predict(
mode=mode,
session_id_text=self.session_info,
api_name="/handle_mode_change"
)
return result
def save_preferences(self, **preferences) -> Dict:
"""Save user preferences"""
return self.client.predict(
param_0=preferences.get("show_reasoning", True),
param_1=preferences.get("show_agent_trace", False),
param_2=preferences.get("response_speed", "Balanced"),
param_3=preferences.get("cache_enabled", True),
api_name="/save_preferences"
)
# Usage
assistant = ResearchAIAssistant(hf_token="your_token")
# Create session
session = assistant.create_session(user_id="Admin_J")
print(f"Session created: {session}")
# Set context mode
assistant.set_context_mode("relevant")
print("Context mode set to relevant")
# Send message
response = assistant.send_message("Explain machine learning")
print(f"Response: {response['response']}")
print(f"Processing time: {response['performance'].get('processing_time', 0):.2f}s")
# Save preferences
assistant.save_preferences(
show_reasoning=True,
response_speed="Fast",
cache_enabled=True
)
```
### Async Integration Example
```python
import asyncio
from gradio_client import Client
async def async_chat_request(message: str, history: List, session_text: str):
"""Async wrapper for chat requests"""
loop = asyncio.get_event_loop()
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
# Run in thread pool to avoid blocking
result = await loop.run_in_executor(
None,
lambda: client.predict(
message=message,
history=history,
user_id="Admin_J",
session_text=session_text,
api_name="/safe_gpu_chat_handler"
)
)
return result
# Usage
async def main():
result = await async_chat_request(
message="Hello",
history=[],
session_text="Session: abc12345 | User: Admin_J | Interactions: 0"
)
print(result[0][-1]["content"])
asyncio.run(main())
```
---
## Integration Guide
### Step 1: Install Dependencies
```bash
pip install gradio_client requests
```
### Step 2: Initialize Client
```python
from gradio_client import Client
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
```
### Step 3: Create Session
```python
session_info = client.predict(
user_id="Admin_J",
api_name="/new_session"
)
```
### Step 4: Send Messages
```python
result = client.predict(
message="Your question here",
history=[],
user_id="Admin_J",
session_text=session_info,
api_name="/safe_gpu_chat_handler"
)
chatbot_history, _, reasoning, performance, context, session_info, skills = result
```
### Step 5: Handle Context Mode
```python
# Switch to relevant context mode
client.predict(
mode="relevant",
session_id_text=session_info,
api_name="/handle_mode_change"
)
```
### Step 6: Save Preferences
```python
client.predict(
param_0=True,
param_1=False,
param_2="Balanced",
param_3=True,
api_name="/save_preferences"
)
```
---
## Testing
### Unit Test Example
```python
import unittest
from gradio_client import Client
class TestResearchAIAssistant(unittest.TestCase):
def setUp(self):
self.client = Client("JatinAutonomousLabs/Research_AI_Assistant")
self.session_info = None
def test_create_session(self):
"""Test session creation"""
result = self.client.predict(
user_id="Admin_J",
api_name="/new_session"
)
self.assertIsInstance(result, str)
self.assertIn("Session:", result)
self.session_info = result
def test_chat_message(self):
"""Test chat message processing"""
if not self.session_info:
self.test_create_session()
result = self.client.predict(
message="Hello",
history=[],
user_id="Admin_J",
session_text=self.session_info,
api_name="/safe_gpu_chat_handler"
)
self.assertEqual(len(result), 7)
self.assertIsInstance(result[0], list) # history
self.assertIsInstance(result[2], dict) # reasoning
def test_context_mode_change(self):
"""Test context mode change"""
if not self.session_info:
self.test_create_session()
result = self.client.predict(
mode="relevant",
session_id_text=self.session_info,
api_name="/handle_mode_change"
)
self.assertIn("Context", result)
if __name__ == '__main__':
unittest.main()
```
### Integration Test Example
```python
def test_full_conversation_flow():
"""Test complete conversation flow"""
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
# 1. Create session
session = client.predict(user_id="Admin_J", api_name="/new_session")
assert "Session:" in session
# 2. Set context mode
client.predict(mode="relevant", session_id_text=session, api_name="/handle_mode_change")
# 3. Send messages
history = []
for message in ["Hello", "What is AI?", "Explain further"]:
result = client.predict(
message=message,
history=history,
user_id="Admin_J",
session_text=session,
api_name="/safe_gpu_chat_handler"
)
history = result[0]
session = result[5] # Updated session info
# 4. Verify conversation context
assert len(history) == 6 # 3 user + 3 assistant messages
# 5. Save preferences
prefs = client.predict(
param_0=True,
param_1=False,
param_2="Fast",
param_3=True,
api_name="/save_preferences"
)
assert prefs["status"] in ["success", "partial"]
print("β
All integration tests passed")
```
---
## Rate Limits & Best Practices
### Rate Limits
Currently, there are **no explicit rate limits** enforced. However, best practices:
- **Chat Requests**: Limit to 1-2 requests per second per session
- **Session Creation**: No strict limit, but avoid rapid session creation
- **Preference Updates**: Limit to reasonable frequency (not per-request)
### Best Practices
#### 1. Session Management
```python
# β
Good: Reuse sessions
session = create_session()
for message in messages:
send_message(message, session)
# β Bad: Create new session for each message
for message in messages:
session = create_session() # Don't do this
send_message(message, session)
```
#### 2. Error Handling
```python
# β
Good: Handle errors gracefully
try:
result = send_message(message)
except Exception as e:
logger.error(f"Request failed: {e}")
# Implement retry or fallback
# β Bad: Ignore errors
result = send_message(message) # No error handling
```
#### 3. Context Mode
```python
# β
Good: Set mode once at session start
set_context_mode("relevant") # Once per session
send_message("Question 1")
send_message("Question 2") # Mode persists
# β Bad: Change mode frequently
set_context_mode("fresh")
send_message("Q1")
set_context_mode("relevant") # Unnecessary switching
send_message("Q2")
```
#### 4. Message Length
```python
# β
Good: Reasonable message length
message = "Your question here" # < 1000 chars typically
# β Bad: Extremely long messages
message = "A" * 10000 # Max allowed but not recommended
```
---
## Support & Troubleshooting
### Common Issues
#### 1. Connection Errors
**Symptom**: `ConnectionError` or timeout
**Solution**:
```python
# Add retry logic
import time
max_retries = 3
for attempt in range(max_retries):
try:
result = client.predict(...)
break
except Exception as e:
if attempt < max_retries - 1:
time.sleep(2 ** attempt)
else:
raise
```
#### 2. Invalid Session ID
**Symptom**: `ValueError: Could not extract session_id`
**Solution**: Ensure session_text format is correct:
```
"Session: abc12345 | User: Admin_J | Interactions: 0"
```
#### 3. Empty Responses
**Symptom**: Response tuple contains empty strings
**Possible Causes**:
- LLM API timeout
- Invalid message format
- System overload
**Solution**: Check `performance_data` for error information
#### 4. Preferences Not Saving
**Symptom**: Preferences return "partial" status
**Cause**: Database unavailable, using cache fallback
**Solution**: Preferences still work via cache, database will sync when available
### Debugging Tips
#### Enable Detailed Logging
```python
import logging
logging.basicConfig(level=logging.DEBUG)
# Client will show detailed request/response logs
```
#### Check Response Metadata
```python
result = client.predict(...)
reasoning = result[2] # Check for errors
performance = result[3] # Check processing info
context = result[4] # Check session context
```
#### Validate Session Info
```python
session_info = "Session: abc12345 | User: Admin_J | Interactions: 0"
# Validate format
import re
match = re.search(r'Session: ([a-f0-9]{8})', session_info)
if not match:
raise ValueError("Invalid session format")
```
---
## API Versioning
### Current Version: 1.0.0
- **Base URL**: Stable (Hugging Face Spaces URL)
- **Endpoint Names**: Stable
- **Response Formats**: Stable
- **Parameters**: Backward compatible additions only
### Version History
- **v1.0.0** (2024-12-28): Initial stable release with all endpoints
### Breaking Changes Policy
- Major version increments indicate breaking changes
- Deprecated endpoints will be announced 30 days in advance
- Old endpoint versions maintained for compatibility
---
## Additional Resources
### Documentation
- **Implementation Details**: See `API_ENDPOINTS_IMPLEMENTATION_COMPLETE.md`
- **Application Features**: See `APPLICATION_FEATURES_REPORT.md`
- **Context Management**: See `CONTEXT_RELEVANCE_IMPLEMENTATION_MILESTONE.md`
### Support Channels
- **GitHub Issues**: [Repository Link]
- **Email Support**: [Support Email]
- **Documentation**: [Documentation Link]
### Changelog
See `CHANGELOG.md` for detailed change history.
---
## Appendix
### A. Complete Request/Response Examples
#### Chat Request (Complete)
```python
from gradio_client import Client
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
# Full request
result = client.predict(
message="What are the applications of quantum computing?",
history=[
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hello! How can I help you?"}
],
user_id="Admin_J",
session_text="Session: abc12345 | User: Admin_J | Interactions: 1",
api_name="/safe_gpu_chat_handler"
)
# Response unpacking
history = result[0]
reasoning = result[2]
performance = result[3]
context = result[4]
session_info = result[5]
skills = result[6]
print(f"Latest response: {history[-1]['content']}")
print(f"Processing time: {performance.get('processing_time', 0):.2f}s")
print(f"Tokens used: {performance.get('token_count', 0)}")
```
### B. Session Lifecycle Example
```python
# 1. Initialize
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
session = None
history = []
# 2. Create session
session = client.predict(user_id="Admin_J", api_name="/new_session")
print(f"Created: {session}")
# 3. Set context mode
client.predict(mode="relevant", session_id_text=session, api_name="/handle_mode_change")
# 4. Conversation loop
for i in range(3):
user_message = input("You: ")
result = client.predict(
message=user_message,
history=history,
user_id="Admin_J",
session_text=session,
api_name="/safe_gpu_chat_handler"
)
history = result[0]
session = result[5] # Updated session with interaction count
print(f"Assistant: {history[-1]['content']}")
print(f"Session: {session}")
# 5. Save preferences
client.predict(
param_0=True,
param_1=False,
param_2="Balanced",
param_3=True,
api_name="/save_preferences"
)
```
### C. Error Recovery Patterns
```python
def robust_chat_request(message, history, session_info, max_retries=3):
"""Chat request with comprehensive error handling"""
client = Client("JatinAutonomousLabs/Research_AI_Assistant")
for attempt in range(max_retries):
try:
result = client.predict(
message=message,
history=history,
user_id="Admin_J",
session_text=session_info,
api_name="/safe_gpu_chat_handler"
)
# Check for errors in response
if isinstance(result[3], dict) and "error" in result[3]:
error = result[3]["error"]
if attempt < max_retries - 1 and "timeout" in error.lower():
time.sleep(2 ** attempt)
continue
raise Exception(error)
return result
except ConnectionError as e:
if attempt < max_retries - 1:
time.sleep(2 ** attempt)
continue
raise
except Exception as e:
if attempt < max_retries - 1:
time.sleep(1)
continue
raise
raise Exception("Max retries exceeded")
```
---
**Document End**
*For questions or issues, please refer to the Support section above.*
|