File size: 4,828 Bytes
5a6a2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Long-Term Context Memory Fix

## Problem

After 2-3 interactions, the system loses context and gives factually incorrect answers. In the user's example:
- Discussed Sachin Tendulkar (cricket)
- Lost context of sport and gave gaming journalist advice about Tom Bramwell

## Root Cause Analysis

### Issue 1: Limited Context Window
- Only showing **last 3 interactions** in prompts
- With longer conversations, early context gets lost

### Issue 2: Incomplete Context Storage
- **OLD**: Only stored `user_input`, not the response
- Context looked like this:
  ```
  interactions: [
    {"user_input": "Who is Sachin?", "timestamp": "..."},
    {"user_input": "Is he the greatest?", "timestamp": "..."}
  ]
  ```
- **PROBLEM**: LLM doesn't know what was answered before!

### Issue 3: No Response Tracking
- When retrieving context from DB, only user questions were available
- Missing the actual conversation flow (Q&A pairs)

## Solution Implemented

### 1. Increased Context Window (3 β†’ 5 interactions)
```python
# OLD: 
recent_interactions = context.get('interactions', [])[:3]

# NEW:
recent_interactions = context.get('interactions', [])[:5]  # Last 5 interactions
```

### 2. Added Response Storage
```python
# OLD:
new_interaction = {
    "user_input": user_input,
    "timestamp": datetime.now().isoformat()
}

# NEW:
new_interaction = {
    "user_input": user_input,
    "timestamp": datetime.now().isoformat(),
    "response": response  # Store the response text βœ“
}
```

### 3. Enhanced Conversation History in Prompts
```python
# OLD format:
"1. User asked: Who is Sachin?\n"

# NEW format:
"Q1: Who is Sachin?
A1: Sachin Ramesh Tendulkar is a legendary Indian cricketer...

Q2: Is he the greatest? 
A2: The question of who is the greatest..."
```

### 4. Updated Orchestrator to Save Responses
```python
# After generating response, update context:
response_text = str(result.get('response', ''))
if response_text:
    self.context_manager._update_context(context, user_input, response_text)
```

## Files Modified

1. **`src/agents/synthesis_agent.py`**:
   - Increased context window from 3 to 5
   - Enhanced conversation history format to include Q&A pairs
   - Added support for displaying responses in prompts

2. **`context_manager.py`**:
   - Updated `_update_context()` to accept `response` parameter
   - Now stores full interaction (user_input + response)

3. **`orchestrator_engine.py`**:
   - Added call to update context with response after processing
   - Ensures responses are saved for future context retrieval

4. **Duplicates in `Research_AI_Assistant/`**: Applied same fixes

## Expected Behavior

### Before Fix:
```
Q1: "Who is Sachin?"
A1: (Cricket info)

Q2: "Is he the greatest?"
A2: (Compares Sachin to Bradman)

Q3: "Define greatness parameters"
A3: ❌ Lost context, gives generic answer

Q4: "Name a cricket journalist"
A4: ❌ Switches to gaming journalist (wrong sport!)
```

### After Fix:
```
Q1: "Who is Sachin?"
A1: (Cricket info) βœ“ Saved to context

Q2: "Is he the greatest?"
A2: (Compares Sachin to Bradman) βœ“ Saved to context
   Context includes: Q1+A1, Q2+A2

Q3: "Define greatness parameters"
A3: βœ“ Knows we're talking about CRICKET greatness
   Context includes: Q1+A1, Q2+A2, Q3+A3

Q4: "Name a cricket journalist"
A4: βœ“ Suggests cricket journalists (Harsha Bhogle, etc.)
   Context includes: Q1+A1, Q2+A2, Q3+A3, Q4+A4
```

## Technical Details

### Context Structure Now:
```json
{
  "session_id": "d5e8171f",
  "interactions": [
    {
      "user_input": "Who is Sachin?",
      "timestamp": "2025-10-27T15:39:32",
      "response": "Sachin Ramesh Tendulkar is a legendary Indian cricketer..."
    },
    {
      "user_input": "Is he the greatest?",
      "timestamp": "2025-10-27T15:40:04",
      "response": "The question of who is the greatest cricketer..."
    }
  ]
}
```

### Prompt Format:
```
User Question: Define greatness parameters

Previous conversation:
Q1: Who is Sachin?
A1: Sachin Ramesh Tendulkar is a legendary Indian cricketer...

Q2: Is he the greatest? What about Don Bradman?
A2: The question of who is the greatest cricketer...

Instructions: Provide a comprehensive, helpful response that directly addresses the question. If there's conversation context, use it to answer the current question appropriately.
```

## Testing

To verify the fix:

1. Ask about a specific topic: "Who is Sachin Tendulkar?"
2. Ask 3-4 follow-up questions without mentioning the sport
3. Verify the system still knows you're talking about cricket
4. Check logs for "context has X interactions"

## Impact

- βœ… Better context retention (5 vs 3 interactions)
- βœ… Complete conversation history (Q&A pairs)
- βœ… Reduced factual errors due to context loss
- βœ… More coherent multi-turn conversations
- βœ… Sport/domain awareness maintained across turns