File size: 26,278 Bytes
80a97c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e5843
 
 
 
 
 
 
80a97c8
 
 
 
a3e5843
80a97c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89bd21
 
80a97c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89bd21
 
80a97c8
 
 
 
 
 
 
 
 
 
 
93f44e2
f89bd21
 
93f44e2
 
f89bd21
 
 
93f44e2
 
f89bd21
93f44e2
f89bd21
 
 
 
 
 
 
 
 
 
 
80a97c8
 
 
f89bd21
80a97c8
 
 
 
 
 
 
 
f89bd21
80a97c8
 
 
f89bd21
80a97c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e5843
 
80a97c8
 
 
 
 
 
 
 
 
 
a3e5843
 
80a97c8
 
 
 
 
 
 
 
 
a3e5843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a97c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
"""
Skills Identification Agent
Specialized in analyzing user prompts and identifying relevant expert skills based on market analysis
"""

import logging
from typing import Dict, Any, List, Tuple
import json
import re

logger = logging.getLogger(__name__)

class SkillsIdentificationAgent:
    def __init__(self, llm_router=None):
        self.llm_router = llm_router
        self.agent_id = "SKILLS_ID_001"
        self.specialization = "Expert skills identification and market analysis"
        
        # Market analysis data from Expert_Skills_Market_Analysis_2024.md
        self.market_categories = {
            "IT and Software Development": {
                "market_share": 25,
                "growth_rate": 25.0,
                "specialized_skills": [
                    "Cybersecurity", "Artificial Intelligence & Machine Learning", 
                    "Cloud Computing", "Data Analytics & Big Data", 
                    "Software Engineering", "Blockchain Technology", "Quantum Computing"
                ]
            },
            "Finance and Accounting": {
                "market_share": 20,
                "growth_rate": 6.8,
                "specialized_skills": [
                    "Financial Analysis & Modeling", "Risk Management", 
                    "Regulatory Compliance", "Fintech Solutions", 
                    "ESG Reporting", "Tax Preparation", "Investment Analysis"
                ]
            },
            "Healthcare and Medicine": {
                "market_share": 15,
                "growth_rate": 8.5,
                "specialized_skills": [
                    "Telemedicine Training", "Advanced Nursing Certifications", 
                    "Healthcare Informatics", "Clinical Research", 
                    "Medical Device Technology", "Public Health", "Mental Health Services"
                ]
            },
            "Education and Teaching": {
                "market_share": 10,
                "growth_rate": 3.2,
                "specialized_skills": [
                    "Instructional Design", "Educational Technology Integration", 
                    "Digital Literacy Training", "Special Education", 
                    "Career Coaching", "E-learning Development", "STEM Education"
                ]
            },
            "Engineering and Construction": {
                "market_share": 10,
                "growth_rate": 8.5,
                "specialized_skills": [
                    "Automation Engineering", "Sustainable Design", 
                    "Project Management", "Environmental Engineering", 
                    "Advanced Manufacturing", "Infrastructure Development", "Quality Control"
                ]
            },
            "Marketing and Sales": {
                "market_share": 10,
                "growth_rate": 7.1,
                "specialized_skills": [
                    "Digital Marketing", "Data Analytics", 
                    "Customer Relationship Management", "Content Marketing", 
                    "E-commerce Management", "Market Research", "Sales Strategy"
                ]
            },
            "Consulting and Strategy": {
                "market_share": 5,
                "growth_rate": 6.0,
                "specialized_skills": [
                    "Business Analysis", "Change Management", 
                    "Strategic Planning", "Operations Research", 
                    "Industry-Specific Knowledge", "Problem-Solving", "Leadership Development"
                ]
            },
            "Environmental and Sustainability": {
                "market_share": 5,
                "growth_rate": 15.0,
                "specialized_skills": [
                    "Renewable Energy Technologies", "Environmental Policy", 
                    "Sustainability Reporting", "Ecological Conservation", 
                    "Carbon Management", "Green Technology", "Circular Economy"
                ]
            },
            "Arts and Humanities": {
                "market_share": 5,
                "growth_rate": 2.5,
                "specialized_skills": [
                    "Creative Thinking", "Cultural Analysis", 
                    "Communication", "Digital Media", 
                    "Language Services", "Historical Research", "Philosophical Analysis"
                ]
            }
        }
        
        # Skill classification categories for the classification_specialist model
        self.skill_categories = [
            "technical_programming", "data_analysis", "cybersecurity", "cloud_computing",
            "financial_analysis", "risk_management", "regulatory_compliance", "fintech",
            "healthcare_technology", "medical_research", "telemedicine", "nursing",
            "educational_technology", "curriculum_design", "online_learning", "teaching",
            "project_management", "engineering_design", "sustainable_engineering", "manufacturing",
            "digital_marketing", "sales_strategy", "customer_management", "market_research",
            "business_consulting", "strategic_planning", "change_management", "leadership",
            "environmental_science", "sustainability", "renewable_energy", "green_technology",
            "creative_design", "content_creation", "communication", "cultural_analysis"
        ]
    
    async def execute(self, user_input: str, context: Dict[str, Any] = None, **kwargs) -> Dict[str, Any]:
        """
        Execute skills identification with two-step process:
        1. Market analysis using reasoning_primary model
        2. Skill classification using classification_specialist model
        """
        try:
            logger.info(f"{self.agent_id} processing user input: {user_input[:100]}...")
            
            # Step 1: Market Analysis with reasoning_primary model
            market_analysis = await self._analyze_market_relevance(user_input, context)
            
            # Step 2: Skill Classification with classification_specialist model
            skill_classification = await self._classify_skills(user_input, context)
            
            # Combine results
            combined_data = {
                "market_analysis": market_analysis,
                "skill_classification": skill_classification,
                "user_input": user_input,
                "context": context
            }
            
            result = {
                "agent_id": self.agent_id,
                "market_analysis": market_analysis,
                "skill_classification": skill_classification,
                "identified_skills": self._extract_high_probability_skills(combined_data),
                "processing_time": market_analysis.get("processing_time", 0) + skill_classification.get("processing_time", 0),
                "confidence_score": self._calculate_overall_confidence(market_analysis, skill_classification)
            }
            
            logger.info(f"{self.agent_id} completed with {len(result['identified_skills'])} skills identified")
            return result
            
        except Exception as e:
            logger.error(f"{self.agent_id} error: {str(e)}")
            return self._get_fallback_result(user_input, context)
    
    async def _analyze_market_relevance(self, user_input: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Use reasoning_primary model to analyze market relevance"""
        
        if self.llm_router:
            try:
                # Build market analysis prompt with context
                market_prompt = self._build_market_analysis_prompt(user_input, context)
                
                logger.info(f"{self.agent_id} calling reasoning_primary for market analysis")
                llm_response = await self.llm_router.route_inference(
                    task_type="general_reasoning",
                    prompt=market_prompt,
                    max_tokens=2000,
                    temperature=0.7
                )
                
                if llm_response and isinstance(llm_response, str) and len(llm_response.strip()) > 0:
                    # Parse LLM response
                    parsed_analysis = self._parse_market_analysis_response(llm_response)
                    parsed_analysis["processing_time"] = 0.8
                    parsed_analysis["method"] = "llm_enhanced"
                    return parsed_analysis
                
            except Exception as e:
                logger.error(f"{self.agent_id} LLM market analysis failed: {e}")
        
        # Fallback to rule-based analysis
        return self._rule_based_market_analysis(user_input)
    
    async def _classify_skills(self, user_input: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Use classification_specialist model to classify skills"""
        
        if self.llm_router:
            try:
                # Build classification prompt
                classification_prompt = self._build_classification_prompt(user_input)
                
                logger.info(f"{self.agent_id} calling classification_specialist for skill classification")
                llm_response = await self.llm_router.route_inference(
                    task_type="intent_classification",
                    prompt=classification_prompt,
                    max_tokens=512,
                    temperature=0.3
                )
                
                if llm_response and isinstance(llm_response, str) and len(llm_response.strip()) > 0:
                    # Parse classification response
                    parsed_classification = self._parse_classification_response(llm_response)
                    parsed_classification["processing_time"] = 0.3
                    parsed_classification["method"] = "llm_enhanced"
                    return parsed_classification
                
            except Exception as e:
                logger.error(f"{self.agent_id} LLM classification failed: {e}")
        
        # Fallback to rule-based classification
        return self._rule_based_skill_classification(user_input)
    
    def _build_market_analysis_prompt(self, user_input: str, context: Dict[str, Any] = None) -> str:
        """Build prompt for market analysis using reasoning_primary model with optional context"""
        
        market_data = "\n".join([
            f"- {category}: {data['market_share']}% market share, {data['growth_rate']}% growth rate"
            for category, data in self.market_categories.items()
        ])
        
        specialized_skills = "\n".join([
            f"- {category}: {', '.join(data['specialized_skills'][:3])}"
            for category, data in self.market_categories.items()
        ])
        
        # Add context information if available (all from cache)
        context_info = ""
        if context:
            session_context = context.get('session_context', {})
            session_summary = session_context.get('summary', '') if isinstance(session_context, dict) else ""
            user_context = context.get('user_context', '')
            interaction_contexts = context.get('interaction_contexts', [])
            
            if session_summary:
                context_info = f"\n\nSession Context (session summary): {session_summary[:300]}..."
            if user_context:
                context_info += f"\n\nUser Context (persona summary): {user_context[:300]}..."
            
            if interaction_contexts:
                # Include recent interaction context to understand topic continuity
                recent_contexts = interaction_contexts[-2:]  # Last 2 interactions
                if recent_contexts:
                    context_info += "\n\nRecent conversation context:"
                    for idx, ic in enumerate(recent_contexts, 1):
                        summary = ic.get('summary', '')
                        if summary:
                            context_info += f"\n  {idx}. {summary}"
        
        return f"""Analyze the following user input and identify the most relevant industry categories and specialized skills based on current market data.

User Input: "{user_input}"
{context_info}

Current Market Distribution:
{market_data}

Specialized Skills by Category (top 3 per category):
{specialized_skills}

Task: 
1. Identify which industry categories are most relevant to the user's input (consider conversation context if provided)
2. Select 1-3 specialized skills from each relevant category that best match the user's needs
3. Provide market share percentages and growth rates for identified categories
4. Explain your reasoning for each selection
5. If conversation context is available, consider how previous topics might inform the skill identification

Respond in JSON format:
{{
    "relevant_categories": [
        {{
            "category": "category_name",
            "market_share": percentage,
            "growth_rate": percentage,
            "relevance_score": 0.0-1.0,
            "reasoning": "explanation"
        }}
    ],
    "selected_skills": [
        {{
            "skill": "skill_name",
            "category": "category_name",
            "relevance_score": 0.0-1.0,
            "reasoning": "explanation"
        }}
    ],
    "overall_analysis": "summary of findings"
}}"""
    
    def _build_classification_prompt(self, user_input: str) -> str:
        """Build prompt for skill classification using classification_specialist model"""
        
        skill_categories_str = ", ".join(self.skill_categories)
        
        return f"""Classify the following user input into relevant skill categories. For each category, provide a probability score (0.0-1.0) indicating how likely the input relates to that skill.

User Input: "{user_input}"

Available Skill Categories: {skill_categories_str}

Task: Provide probability scores for each skill category that passes a 20% threshold.

Respond in JSON format:
{{
    "skill_probabilities": {{
        "category_name": probability_score,
        ...
    }},
    "top_skills": [
        {{
            "skill": "category_name",
            "probability": score,
            "confidence": "high/medium/low"
        }}
    ],
    "classification_reasoning": "explanation of classification decisions"
}}"""
    
    def _parse_market_analysis_response(self, response: str) -> Dict[str, Any]:
        """Parse LLM response for market analysis"""
        try:
            # Try to extract JSON from response
            json_match = re.search(r'\{.*\}', response, re.DOTALL)
            if json_match:
                parsed = json.loads(json_match.group())
                return parsed
        except json.JSONDecodeError:
            logger.warning(f"{self.agent_id} Failed to parse market analysis JSON")
        
        # Fallback parsing
        return {
            "relevant_categories": [{"category": "General", "market_share": 10, "growth_rate": 5.0, "relevance_score": 0.7, "reasoning": "General analysis"}],
            "selected_skills": [{"skill": "General Analysis", "category": "General", "relevance_score": 0.7, "reasoning": "Broad applicability"}],
            "overall_analysis": "Market analysis completed with fallback parsing",
            "method": "fallback_parsing"
        }
    
    def _parse_classification_response(self, response: str) -> Dict[str, Any]:
        """Parse LLM response for skill classification"""
        try:
            # Try to extract JSON from response
            json_match = re.search(r'\{.*\}', response, re.DOTALL)
            if json_match:
                parsed = json.loads(json_match.group())
                return parsed
        except json.JSONDecodeError:
            logger.warning(f"{self.agent_id} Failed to parse classification JSON")
        
        # Fallback parsing
        return {
            "skill_probabilities": {"general_analysis": 0.7},
            "top_skills": [{"skill": "general_analysis", "probability": 0.7, "confidence": "medium"}],
            "classification_reasoning": "Classification completed with fallback parsing",
            "method": "fallback_parsing"
        }
    
    def _rule_based_market_analysis(self, user_input: str) -> Dict[str, Any]:
        """Rule-based fallback for market analysis"""
        user_input_lower = user_input.lower()
        
        relevant_categories = []
        selected_skills = []
        
        # Pattern matching for different categories
        patterns = {
            "IT and Software Development": ["code", "programming", "software", "tech", "ai", "machine learning", "data", "cyber", "cloud"],
            "Finance and Accounting": ["finance", "money", "investment", "banking", "accounting", "financial", "risk", "compliance"],
            "Healthcare and Medicine": ["health", "medical", "doctor", "nurse", "patient", "clinical", "medicine", "healthcare"],
            "Education and Teaching": ["teach", "education", "learn", "student", "school", "curriculum", "instruction"],
            "Engineering and Construction": ["engineer", "construction", "build", "project", "manufacturing", "design"],
            "Marketing and Sales": ["marketing", "sales", "customer", "advertising", "promotion", "brand"],
            "Consulting and Strategy": ["consulting", "strategy", "business", "management", "planning"],
            "Environmental and Sustainability": ["environment", "sustainable", "green", "renewable", "climate", "carbon"],
            "Arts and Humanities": ["art", "creative", "culture", "humanities", "design", "communication"]
        }
        
        for category, keywords in patterns.items():
            relevance_score = 0.0
            for keyword in keywords:
                if keyword in user_input_lower:
                    relevance_score += 0.2
            
            if relevance_score > 0.0:
                category_data = self.market_categories[category]
                relevant_categories.append({
                    "category": category,
                    "market_share": category_data["market_share"],
                    "growth_rate": category_data["growth_rate"],
                    "relevance_score": min(1.0, relevance_score),
                    "reasoning": f"Matched keywords: {[k for k in keywords if k in user_input_lower]}"
                })
                
                # Add top skills from this category
                for skill in category_data["specialized_skills"][:2]:
                    selected_skills.append({
                        "skill": skill,
                        "category": category,
                        "relevance_score": relevance_score * 0.8,
                        "reasoning": f"From {category} category"
                    })
        
        return {
            "relevant_categories": relevant_categories,
            "selected_skills": selected_skills,
            "overall_analysis": f"Rule-based analysis identified {len(relevant_categories)} relevant categories",
            "processing_time": 0.1,
            "method": "rule_based"
        }
    
    def _rule_based_skill_classification(self, user_input: str) -> Dict[str, Any]:
        """Rule-based fallback for skill classification"""
        user_input_lower = user_input.lower()
        
        skill_probabilities = {}
        top_skills = []
        
        # Simple keyword matching for skill categories
        skill_keywords = {
            "technical_programming": ["code", "programming", "software", "development", "python", "java"],
            "data_analysis": ["data", "analysis", "statistics", "analytics", "research"],
            "cybersecurity": ["security", "cyber", "hack", "protection", "vulnerability"],
            "financial_analysis": ["finance", "money", "investment", "financial", "economic"],
            "healthcare_technology": ["health", "medical", "healthcare", "clinical", "patient"],
            "educational_technology": ["education", "teach", "learn", "student", "curriculum"],
            "project_management": ["project", "manage", "planning", "coordination", "leadership"],
            "digital_marketing": ["marketing", "advertising", "promotion", "social media", "brand"],
            "environmental_science": ["environment", "sustainable", "green", "climate", "carbon"],
            "creative_design": ["design", "creative", "art", "visual", "graphic"]
        }
        
        for skill, keywords in skill_keywords.items():
            probability = 0.0
            for keyword in keywords:
                if keyword in user_input_lower:
                    probability += 0.3
            
            if probability > 0.2:  # 20% threshold
                skill_probabilities[skill] = min(1.0, probability)
                top_skills.append({
                    "skill": skill,
                    "probability": skill_probabilities[skill],
                    "confidence": "high" if probability > 0.6 else "medium" if probability > 0.4 else "low"
                })
        
        return {
            "skill_probabilities": skill_probabilities,
            "top_skills": top_skills,
            "classification_reasoning": f"Rule-based classification identified {len(top_skills)} relevant skills",
            "processing_time": 0.05,
            "method": "rule_based"
        }
    
    def _extract_high_probability_skills(self, classification: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Extract skills that pass the 20% probability threshold"""
        high_prob_skills = []
        
        # From market analysis
        market_analysis = classification.get("market_analysis", {})
        market_skills = market_analysis.get("selected_skills", [])
        for skill in market_skills:
            if skill.get("relevance_score", 0) > 0.2:
                high_prob_skills.append({
                    "skill": skill["skill"],
                    "category": skill["category"],
                    "probability": skill["relevance_score"],
                    "source": "market_analysis"
                })
        
        # From skill classification
        skill_classification = classification.get("skill_classification", {})
        classification_skills = skill_classification.get("top_skills", [])
        for skill in classification_skills:
            if skill.get("probability", 0) > 0.2:
                high_prob_skills.append({
                    "skill": skill["skill"],
                    "category": "classified",
                    "probability": skill["probability"],
                    "source": "skill_classification"
                })
        
        # If no skills found from LLM, use rule-based fallback
        if not high_prob_skills:
            logger.warning(f"{self.agent_id} No skills identified from LLM, using rule-based fallback")
            # Extract user input from context if available
            user_input = ""
            if isinstance(classification, dict) and "user_input" in classification:
                user_input = classification["user_input"]
            elif isinstance(classification, dict) and "context" in classification:
                context = classification["context"]
                if isinstance(context, dict) and "user_input" in context:
                    user_input = context["user_input"]
            
            if user_input:
                rule_based_result = self._rule_based_skill_classification(user_input)
                rule_skills = rule_based_result.get("top_skills", [])
                for skill in rule_skills:
                    if skill.get("probability", 0) > 0.2:
                        high_prob_skills.append({
                            "skill": skill["skill"],
                            "category": "rule_based",
                            "probability": skill["probability"],
                            "source": "rule_based_fallback"
                        })
        
        # Remove duplicates and sort by probability
        unique_skills = {}
        for skill in high_prob_skills:
            skill_name = skill["skill"]
            if skill_name not in unique_skills or skill["probability"] > unique_skills[skill_name]["probability"]:
                unique_skills[skill_name] = skill
        
        return sorted(unique_skills.values(), key=lambda x: x["probability"], reverse=True)
    
    def _calculate_overall_confidence(self, market_analysis: Dict[str, Any], skill_classification: Dict[str, Any]) -> float:
        """Calculate overall confidence score"""
        market_confidence = len(market_analysis.get("relevant_categories", [])) * 0.1
        classification_confidence = len(skill_classification.get("top_skills", [])) * 0.1
        
        return min(1.0, market_confidence + classification_confidence + 0.3)
    
    def _get_fallback_result(self, user_input: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Provide fallback result when processing fails"""
        return {
            "agent_id": self.agent_id,
            "market_analysis": {
                "relevant_categories": [{"category": "General", "market_share": 10, "growth_rate": 5.0, "relevance_score": 0.5, "reasoning": "Fallback analysis"}],
                "selected_skills": [{"skill": "General Analysis", "category": "General", "relevance_score": 0.5, "reasoning": "Fallback skill"}],
                "overall_analysis": "Fallback analysis due to processing error",
                "processing_time": 0.01,
                "method": "fallback"
            },
            "skill_classification": {
                "skill_probabilities": {"general_analysis": 0.5},
                "top_skills": [{"skill": "general_analysis", "probability": 0.5, "confidence": "low"}],
                "classification_reasoning": "Fallback classification due to processing error",
                "processing_time": 0.01,
                "method": "fallback"
            },
            "identified_skills": [{"skill": "General Analysis", "category": "General", "probability": 0.5, "source": "fallback"}],
            "processing_time": 0.02,
            "confidence_score": 0.3,
            "error_handled": True
        }

# Factory function for easy instantiation
def create_skills_identification_agent(llm_router=None):
    return SkillsIdentificationAgent(llm_router)