File size: 36,419 Bytes
66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 55f436b 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 55f436b 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 5a6a2cc 7506c11 fa57725 7506c11 5a6a2cc 7506c11 fa57725 7506c11 7dd9795 7506c11 fa57725 7dd9795 f89bd21 7506c11 fa57725 7506c11 fa57725 7506c11 fa57725 7506c11 fa57725 7506c11 f89bd21 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 7dd9795 55f436b 7506c11 55f436b 7506c11 55f436b 7506c11 55f436b 7506c11 55f436b 7506c11 55f436b 7506c11 f89bd21 7506c11 55f436b f89bd21 93f44e2 f89bd21 93f44e2 f89bd21 93f44e2 f89bd21 93f44e2 f89bd21 7506c11 a814110 f89bd21 7506c11 a814110 f89bd21 7506c11 a814110 f89bd21 7506c11 f89bd21 7506c11 f89bd21 a814110 7506c11 f89bd21 7506c11 f89bd21 7506c11 f89bd21 66dbebd 7506c11 55f436b 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 66dbebd 7506c11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
"""
Enhanced Synthesis Agent with Expert Consultant Assignment
Based on skill probability scores from Skills Identification Agent
"""
import logging
import json
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime
import re
logger = logging.getLogger(__name__)
class ExpertConsultantAssigner:
"""
Assigns expert consultant profiles based on skill probabilities
and generates weighted expertise for response synthesis
"""
# Expert consultant profiles with skill mappings
EXPERT_PROFILES = {
"data_analysis": {
"title": "Senior Data Analytics Consultant",
"expertise": ["Statistical Analysis", "Data Visualization", "Business Intelligence", "Predictive Modeling"],
"background": "15+ years in data science across finance, healthcare, and tech sectors",
"style": "methodical, evidence-based, quantitative reasoning"
},
"technical_programming": {
"title": "Principal Software Engineering Consultant",
"expertise": ["Full-Stack Development", "System Architecture", "DevOps", "Code Optimization"],
"background": "20+ years leading technical teams at Fortune 500 companies",
"style": "practical, solution-oriented, best practices focused"
},
"project_management": {
"title": "Strategic Project Management Consultant",
"expertise": ["Agile/Scrum", "Risk Management", "Stakeholder Communication", "Resource Optimization"],
"background": "12+ years managing complex enterprise projects across industries",
"style": "structured, process-driven, outcome-focused"
},
"financial_analysis": {
"title": "Executive Financial Strategy Consultant",
"expertise": ["Financial Modeling", "Investment Analysis", "Risk Assessment", "Corporate Finance"],
"background": "18+ years in investment banking and corporate finance advisory",
"style": "analytical, risk-aware, ROI-focused"
},
"digital_marketing": {
"title": "Chief Marketing Strategy Consultant",
"expertise": ["Digital Campaign Strategy", "Customer Analytics", "Brand Development", "Growth Hacking"],
"background": "14+ years scaling marketing for startups to enterprise clients",
"style": "creative, data-driven, customer-centric"
},
"business_consulting": {
"title": "Senior Management Consultant",
"expertise": ["Strategic Planning", "Organizational Development", "Process Improvement", "Change Management"],
"background": "16+ years at top-tier consulting firms (McKinsey, BCG equivalent)",
"style": "strategic, framework-driven, holistic thinking"
},
"cybersecurity": {
"title": "Chief Information Security Consultant",
"expertise": ["Threat Assessment", "Security Architecture", "Compliance", "Incident Response"],
"background": "12+ years protecting critical infrastructure across government and private sectors",
"style": "security-first, compliance-aware, risk mitigation focused"
},
"healthcare_technology": {
"title": "Healthcare Innovation Consultant",
"expertise": ["Health Informatics", "Telemedicine", "Medical Device Integration", "HIPAA Compliance"],
"background": "10+ years implementing healthcare technology solutions",
"style": "patient-centric, regulation-compliant, evidence-based"
},
"educational_technology": {
"title": "Learning Technology Strategy Consultant",
"expertise": ["Instructional Design", "EdTech Implementation", "Learning Analytics", "Curriculum Development"],
"background": "13+ years transforming educational experiences through technology",
"style": "learner-focused, pedagogy-driven, accessibility-minded"
},
"environmental_science": {
"title": "Sustainability Strategy Consultant",
"expertise": ["Environmental Impact Assessment", "Carbon Footprint Analysis", "Green Technology", "ESG Reporting"],
"background": "11+ years driving environmental initiatives for corporations",
"style": "sustainability-focused, data-driven, long-term thinking"
}
}
def assign_expert_consultant(self, skill_probabilities: Dict[str, float]) -> Dict[str, Any]:
"""
Create ultra-expert profile combining all relevant consultants
Args:
skill_probabilities: Dict mapping skill categories to probability scores (0.0-1.0)
Returns:
Dict containing ultra-expert profile with combined expertise
"""
if not skill_probabilities:
return self._get_default_consultant()
# Calculate weighted scores for available expert profiles
expert_scores = {}
total_weight = 0
for skill, probability in skill_probabilities.items():
if skill in self.EXPERT_PROFILES and probability >= 0.2: # 20% threshold
expert_scores[skill] = probability
total_weight += probability
if not expert_scores:
return self._get_default_consultant()
# Create ultra-expert combining all relevant consultants
ultra_expert = self._create_ultra_expert(expert_scores, total_weight)
return {
"assigned_consultant": ultra_expert,
"expertise_weights": expert_scores,
"total_weight": total_weight,
"assignment_rationale": self._generate_ultra_expert_rationale(expert_scores, total_weight)
}
def _get_default_consultant(self) -> Dict[str, Any]:
"""Default consultant for general inquiries"""
return {
"assigned_consultant": {
"primary_expertise": "business_consulting",
"title": "Senior Management Consultant",
"expertise": ["Strategic Planning", "Problem Solving", "Analysis", "Communication"],
"background": "Generalist consultant with broad industry experience",
"style": "balanced, analytical, comprehensive",
"secondary_expertise": [],
"confidence_score": 0.7
},
"expertise_weights": {"business_consulting": 0.7},
"total_weight": 0.7,
"assignment_rationale": "Default consultant assigned for general business inquiry"
}
def _create_ultra_expert(self, expert_scores: Dict[str, float], total_weight: float) -> Dict[str, Any]:
"""Create ultra-expert profile combining all relevant consultants"""
# Sort skills by probability (highest first)
sorted_skills = sorted(expert_scores.items(), key=lambda x: x[1], reverse=True)
# Combine all expertise areas with weights
combined_expertise = []
combined_background_elements = []
combined_style_elements = []
for skill, weight in sorted_skills:
if skill in self.EXPERT_PROFILES:
profile = self.EXPERT_PROFILES[skill]
# Weight-based contribution
contribution_ratio = weight / total_weight
# Add expertise areas with weight indicators
for expertise in profile["expertise"]:
weighted_expertise = f"{expertise} (Weight: {contribution_ratio:.1%})"
combined_expertise.append(weighted_expertise)
# Extract background years and combine
background = profile["background"]
combined_background_elements.append(f"{background} [{skill}]")
# Combine style elements
style_parts = [s.strip() for s in profile["style"].split(",")]
combined_style_elements.extend(style_parts)
# Create ultra-expert title combining top skills
top_skills = [skill.replace("_", " ").title() for skill, _ in sorted_skills[:3]]
ultra_title = f"Visionary Ultra-Expert: {' + '.join(top_skills)} Integration Specialist"
# Combine backgrounds into comprehensive experience
total_years = sum([self._extract_years_from_background(bg) for bg in combined_background_elements])
ultra_background = f"{total_years}+ years combined experience across {len(sorted_skills)} domains: " + \
"; ".join(combined_background_elements[:3]) # Limit for readability
# Create unified style combining all approaches
unique_styles = list(set(combined_style_elements))
ultra_style = ", ".join(unique_styles[:6]) # Top 6 style elements
return {
"primary_expertise": "ultra_expert_integration",
"title": ultra_title,
"expertise": combined_expertise,
"background": ultra_background,
"style": ultra_style,
"domain_integration": sorted_skills,
"confidence_score": total_weight / len(sorted_skills), # Average confidence
"ultra_expert": True,
"expertise_count": len(sorted_skills),
"total_experience_years": total_years
}
def _extract_years_from_background(self, background: str) -> int:
"""Extract years of experience from background string"""
years_match = re.search(r'(\d+)\+?\s*years?', background.lower())
return int(years_match.group(1)) if years_match else 10 # Default to 10 years
def _generate_ultra_expert_rationale(self, expert_scores: Dict[str, float], total_weight: float) -> str:
"""Generate explanation for ultra-expert assignment"""
sorted_skills = sorted(expert_scores.items(), key=lambda x: x[1], reverse=True)
rationale_parts = [
f"Ultra-Expert Profile combining {len(sorted_skills)} specialized domains",
f"Total expertise weight: {total_weight:.2f} across integrated skill areas"
]
# Add top 3 contributions
top_contributions = []
for skill, weight in sorted_skills[:3]:
contribution = (weight / total_weight) * 100
top_contributions.append(f"{skill} ({weight:.1%}, {contribution:.0f}% contribution)")
rationale_parts.append(f"Primary domains: {'; '.join(top_contributions)}")
if len(sorted_skills) > 3:
additional_count = len(sorted_skills) - 3
rationale_parts.append(f"Plus {additional_count} additional specialized areas")
return " | ".join(rationale_parts)
class EnhancedSynthesisAgent:
"""
Enhanced synthesis agent with expert consultant assignment
Compatible with existing ResponseSynthesisAgent interface
"""
def __init__(self, llm_router, agent_id: str = "RESP_SYNTH_001"):
self.llm_router = llm_router
self.agent_id = agent_id
self.specialization = "Multi-source information integration and coherent response generation"
self.expert_assigner = ExpertConsultantAssigner()
self._current_user_input = None
async def execute(self, user_input: str = None, agent_outputs: List[Dict[str, Any]] = None,
context: Dict[str, Any] = None, skills_result: Dict[str, Any] = None,
**kwargs) -> Dict[str, Any]:
"""
Execute synthesis with expert consultant assignment
Compatible with both old interface (agent_outputs first) and new interface (user_input first)
Args:
user_input: Original user question
agent_outputs: Results from other agents (can be first positional arg for compatibility)
context: Conversation context
skills_result: Output from skills identification agent
Returns:
Dict containing synthesized response and metadata
"""
# Handle backward compatibility and normalize arguments
# Case 1: First arg is agent_outputs (old interface)
if isinstance(user_input, list) and agent_outputs is None:
agent_outputs = user_input
user_input = kwargs.get('user_input', '')
context = kwargs.get('context', context)
skills_result = kwargs.get('skills_result', skills_result)
# Case 2: All args via kwargs
elif user_input is None:
user_input = kwargs.get('user_input', '')
agent_outputs = kwargs.get('agent_outputs', agent_outputs)
context = kwargs.get('context', context)
skills_result = kwargs.get('skills_result', skills_result)
# Ensure user_input is a string
if not isinstance(user_input, str):
user_input = str(user_input) if user_input else ''
# Default agent_outputs to empty list and normalize format
if agent_outputs is None:
agent_outputs = []
# Normalize agent_outputs: convert dict to list if needed
if isinstance(agent_outputs, dict):
# Convert dict {task_name: result} to list of dicts
normalized_outputs = []
for task_name, result in agent_outputs.items():
if isinstance(result, dict):
# Add task name to the result dict for context
result_with_task = result.copy()
result_with_task['task_name'] = task_name
normalized_outputs.append(result_with_task)
else:
# Wrap non-dict results
normalized_outputs.append({
'task_name': task_name,
'content': str(result),
'result': str(result)
})
agent_outputs = normalized_outputs
# Ensure it's a list
if not isinstance(agent_outputs, list):
agent_outputs = [agent_outputs] if agent_outputs else []
logger.info(f"{self.agent_id} synthesizing {len(agent_outputs)} agent outputs")
if context:
interaction_count = len(context.get('interaction_contexts', [])) if context else 0
logger.info(f"{self.agent_id} context has {interaction_count} interaction contexts")
# STEP 1: Extract skill probabilities from skills_result
skill_probabilities = self._extract_skill_probabilities(skills_result)
logger.info(f"Extracted skill probabilities: {skill_probabilities}")
# STEP 2: Assign expert consultant based on probabilities
consultant_assignment = self.expert_assigner.assign_expert_consultant(skill_probabilities)
assigned_consultant = consultant_assignment["assigned_consultant"]
logger.info(f"Assigned consultant: {assigned_consultant['title']} ({assigned_consultant.get('primary_expertise', 'N/A')})")
# STEP 3: Generate expert consultant preamble
expert_preamble = self._generate_expert_preamble(assigned_consultant, consultant_assignment)
# STEP 4: Build synthesis prompt with expert context
synthesis_prompt = self._build_synthesis_prompt_with_expert(
user_input=user_input,
context=context,
agent_outputs=agent_outputs,
expert_preamble=expert_preamble,
assigned_consultant=assigned_consultant
)
logger.info(f"{self.agent_id} calling LLM for response synthesis")
# Call LLM with enhanced prompt
try:
response = await self.llm_router.route_inference(
task_type="response_synthesis",
prompt=synthesis_prompt,
max_tokens=2000,
temperature=0.7
)
# Only use fallback if LLM actually fails (returns None, empty, or invalid)
if not response or not isinstance(response, str) or len(response.strip()) == 0:
logger.warning(f"{self.agent_id} LLM returned empty/invalid response, using fallback")
return self._get_fallback_response(user_input, agent_outputs, assigned_consultant)
clean_response = response.strip()
logger.info(f"{self.agent_id} received LLM response (length: {len(clean_response)})")
# Build comprehensive result compatible with existing interface
result = {
"synthesized_response": clean_response,
"draft_response": clean_response,
"final_response": clean_response, # Main response field - used by UI
"assigned_consultant": assigned_consultant,
"expertise_weights": consultant_assignment["expertise_weights"],
"assignment_rationale": consultant_assignment["assignment_rationale"],
"source_references": self._extract_source_references(agent_outputs),
"coherence_score": 0.90,
"improvement_opportunities": self._identify_improvements(clean_response),
"synthesis_method": "expert_enhanced_llm",
"agent_id": self.agent_id,
"synthesis_quality_metrics": self._calculate_quality_metrics({"final_response": clean_response}),
"synthesis_metadata": {
"agent_outputs_count": len(agent_outputs),
"context_interactions": len(context.get('interaction_contexts', [])) if context else 0,
"user_context_available": bool(context.get('user_context', '')) if context else False,
"expert_enhanced": True,
"processing_timestamp": datetime.now().isoformat()
}
}
# Add intent alignment if available
intent_info = self._extract_intent_info(agent_outputs)
if intent_info:
result["intent_alignment"] = self._check_intent_alignment(result, intent_info)
return result
except Exception as e:
logger.error(f"{self.agent_id} synthesis failed: {str(e)}", exc_info=True)
return self._get_fallback_response(user_input, agent_outputs, assigned_consultant)
def _extract_skill_probabilities(self, skills_result: Dict[str, Any]) -> Dict[str, float]:
"""Extract skill probabilities from skills identification result"""
if not skills_result:
return {}
# Check for skill_classification structure
skill_classification = skills_result.get('skill_classification', {})
if 'skill_probabilities' in skill_classification:
return skill_classification['skill_probabilities']
# Check for direct skill_probabilities
if 'skill_probabilities' in skills_result:
return skills_result['skill_probabilities']
# Extract from identified_skills if structured differently
identified_skills = skills_result.get('identified_skills', [])
if isinstance(identified_skills, list):
probabilities = {}
for skill in identified_skills:
if isinstance(skill, dict) and 'skill' in skill and 'probability' in skill:
# Map skill name to expert profile name if needed
skill_name = skill['skill']
probability = skill['probability']
probabilities[skill_name] = probability
elif isinstance(skill, dict) and 'category' in skill:
skill_name = skill['category']
probability = skill.get('probability', skill.get('confidence', 0.5))
probabilities[skill_name] = probability
return probabilities
return {}
def _generate_expert_preamble(self, assigned_consultant: Dict[str, Any],
consultant_assignment: Dict[str, Any]) -> str:
"""Generate expert consultant preamble for LLM prompt"""
if assigned_consultant.get('ultra_expert'):
# Ultra-expert preamble
preamble = f"""You are responding as a {assigned_consultant['title']} - an unprecedented combination of industry-leading experts.
ULTRA-EXPERT PROFILE:
- Integrated Expertise: {assigned_consultant['expertise_count']} specialized domains
- Combined Experience: {assigned_consultant['total_experience_years']}+ years across multiple industries
- Integration Approach: Cross-domain synthesis with deep specialization
- Response Style: {assigned_consultant['style']}
DOMAIN INTEGRATION: {', '.join([f"{skill} ({weight:.1%})" for skill, weight in assigned_consultant['domain_integration']])}
SPECIALIZED EXPERTISE AREAS:
{chr(10).join([f"• {expertise}" for expertise in assigned_consultant['expertise'][:8]])}
ASSIGNMENT RATIONALE: {consultant_assignment['assignment_rationale']}
KNOWLEDGE DEPTH REQUIREMENT:
- Provide insights equivalent to a visionary thought leader combining expertise from multiple domains
- Synthesize knowledge across {assigned_consultant['expertise_count']} specialization areas
- Apply interdisciplinary thinking and cross-domain innovation
- Leverage combined {assigned_consultant['total_experience_years']}+ years of integrated experience
ULTRA-EXPERT RESPONSE GUIDELINES:
- Draw from extensive cross-domain experience and pattern recognition
- Provide multi-perspective analysis combining different expert viewpoints
- Include interdisciplinary frameworks and innovative approaches
- Acknowledge complexity while providing actionable, synthesized recommendations
- Balance broad visionary thinking with deep domain-specific insights
- Use integrative problem-solving that spans multiple expertise areas
"""
else:
# Standard single expert preamble
preamble = f"""You are responding as a {assigned_consultant['title']} with the following profile:
EXPERTISE PROFILE:
- Primary Expertise: {assigned_consultant['primary_expertise']}
- Core Skills: {', '.join(assigned_consultant['expertise'])}
- Background: {assigned_consultant['background']}
- Response Style: {assigned_consultant['style']}
ASSIGNMENT RATIONALE: {consultant_assignment['assignment_rationale']}
EXPERTISE WEIGHTS: {', '.join([f"{skill}: {weight:.1%}" for skill, weight in consultant_assignment['expertise_weights'].items()])}
"""
if assigned_consultant.get('secondary_expertise'):
preamble += f"SECONDARY EXPERTISE: {', '.join(assigned_consultant['secondary_expertise'])}\n"
preamble += f"""
KNOWLEDGE DEPTH REQUIREMENT: Provide insights equivalent to a highly experienced, industry-leading {assigned_consultant['title']} with deep domain expertise and practical experience.
RESPONSE GUIDELINES:
- Draw from extensive practical experience in your field
- Provide industry-specific insights and best practices
- Include relevant frameworks, methodologies, or tools
- Acknowledge complexity while remaining actionable
- Balance theoretical knowledge with real-world application
"""
return preamble
def _build_synthesis_prompt_with_expert(self, user_input: str, context: Dict[str, Any],
agent_outputs: List[Dict[str, Any]],
expert_preamble: str,
assigned_consultant: Dict[str, Any]) -> str:
"""Build synthesis prompt with expert consultant context"""
# Build context section with summarization for long conversations
context_section = self._build_context_section(context)
# Build agent outputs section if any
agent_outputs_section = ""
if agent_outputs:
# Handle both dict and list formats
if isinstance(agent_outputs, dict):
# Convert dict to list format
outputs_list = []
for task_name, result in agent_outputs.items():
if isinstance(result, dict):
outputs_list.append(result)
else:
# Wrap string/non-dict results in dict format
outputs_list.append({
'task': task_name,
'content': str(result),
'result': str(result)
})
agent_outputs = outputs_list
# Ensure it's a list now
if isinstance(agent_outputs, list):
agent_outputs_section = f"\n\nAgent Analysis Results:\n"
for i, output in enumerate(agent_outputs, 1):
# Handle both dict and string outputs
if isinstance(output, dict):
output_text = output.get('content') or output.get('result') or output.get('final_response') or str(output)
else:
# If output is a string or other type
output_text = str(output)
agent_outputs_section += f"Agent {i}: {output_text}\n"
else:
# Fallback for unexpected types
agent_outputs_section = f"\n\nAgent Analysis Results:\n{str(agent_outputs)}\n"
# Construct full prompt
prompt = f"""{expert_preamble}
User Question: {user_input}
{context_section}{agent_outputs_section}
Instructions: Provide a comprehensive, helpful response that directly addresses the question from your expert perspective. If there's conversation context, use it to answer the current question appropriately. Be detailed, informative, and leverage your specialized expertise in {assigned_consultant.get('primary_expertise', 'general consulting')}.
Response:"""
return prompt
def _build_context_section(self, context: Dict[str, Any]) -> str:
"""Build context section with summarization for long conversations
Uses Context Manager structure:
- combined_context: Pre-formatted context string (preferred)
- interaction_contexts: List of interaction summaries with 'summary' and 'timestamp'
- user_context: User persona summary string
"""
if not context:
return ""
# Prefer combined_context if available (pre-formatted by Context Manager)
# combined_context includes Session Context, User Context, and Interaction Contexts
combined_context = context.get('combined_context', '')
if combined_context:
# Use the pre-formatted context from Context Manager
# It already includes Session Context, User Context, and Interaction Contexts formatted
return f"\n\nConversation Context:\n{combined_context}"
# Fallback: Build from individual components if combined_context not available
# All components are from cache
session_context = context.get('session_context', {})
session_summary = session_context.get('summary', '') if isinstance(session_context, dict) else ""
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')
context_section = ""
# Add session context if available (from cache)
if session_summary:
context_section += f"\n\nSession Context (Session Summary):\n{session_summary[:500]}...\n"
# Add user context if available
if user_context:
context_section += f"\n\nUser Context (Persona Summary):\n{user_context[:500]}...\n"
# Add interaction contexts
if interaction_contexts:
if len(interaction_contexts) <= 8:
# Show all interaction summaries for short conversations
context_section += "\n\nPrevious Conversation Summary:\n"
for i, ic in enumerate(interaction_contexts, 1):
summary = ic.get('summary', '')
if summary:
context_section += f" {i}. {summary}\n"
else:
# Summarize older interactions, show recent ones
recent_contexts = interaction_contexts[-8:] # Last 8 interactions
older_contexts = interaction_contexts[:-8] # Everything before last 8
# Create summary of older interactions
summary = self._summarize_interaction_contexts(older_contexts)
context_section += f"\n\nConversation Summary (earlier context):\n{summary}\n\nRecent Conversation:\n"
for i, ic in enumerate(recent_contexts, 1):
summary_text = ic.get('summary', '')
if summary_text:
context_section += f" {i}. {summary_text}\n"
return context_section
def _summarize_interaction_contexts(self, interaction_contexts: List[Dict[str, Any]]) -> str:
"""Summarize older interaction contexts to preserve key context
Uses Context Manager structure where interaction_contexts contains:
- summary: 50-token interaction summary string
- timestamp: Interaction timestamp
"""
if not interaction_contexts:
return "No prior context."
# Extract key topics and themes from summaries
topics = []
key_points = []
for ic in interaction_contexts:
summary = ic.get('summary', '')
if summary:
# Extract topics from summary (simple keyword extraction)
# Summaries are already condensed, so extract meaningful terms
words = summary.lower().split()
key_terms = [word for word in words if len(word) > 4][:3]
topics.extend(key_terms)
# Use summary as key point (already a summary)
key_points.append(summary[:150])
# Build summary
unique_topics = list(set(topics))[:5] # Top 5 unique topics
recent_points = key_points[-5:] # Last 5 key points
summary_text = f"Topics discussed: {', '.join(unique_topics) if unique_topics else 'General discussion'}\n"
summary_text += f"Key points: {' | '.join(recent_points) if recent_points else 'No specific points'}"
return summary_text
def _summarize_interactions(self, interactions: List[Dict[str, Any]]) -> str:
"""Legacy method for backward compatibility - delegates to _summarize_interaction_contexts"""
# Convert old format to new format if needed
if interactions and 'summary' in interactions[0]:
# Already in new format
return self._summarize_interaction_contexts(interactions)
else:
# Old format - convert
interaction_contexts = []
for interaction in interactions:
user_input = interaction.get('user_input', '')
assistant_response = interaction.get('assistant_response') or interaction.get('response', '')
# Create a simple summary
summary = f"User asked: {user_input[:100]}..." if user_input else ""
if summary:
interaction_contexts.append({'summary': summary})
return self._summarize_interaction_contexts(interaction_contexts)
def _extract_intent_info(self, agent_outputs: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Extract intent information from agent outputs"""
for output in agent_outputs:
if 'primary_intent' in output:
return {
'primary_intent': output['primary_intent'],
'confidence': output.get('confidence_scores', {}).get(output['primary_intent'], 0.5),
'source_agent': output.get('agent_id', 'unknown')
}
return None
def _extract_source_references(self, agent_outputs: List[Dict[str, Any]]) -> List[str]:
"""Extract source references from agent outputs"""
sources = []
for output in agent_outputs:
agent_id = output.get('agent_id', 'unknown')
sources.append(agent_id)
return list(set(sources)) # Remove duplicates
def _calculate_quality_metrics(self, synthesis_result: Dict[str, Any]) -> Dict[str, Any]:
"""Calculate quality metrics for synthesis"""
response = synthesis_result.get('final_response', '')
return {
"length": len(response),
"word_count": len(response.split()) if response else 0,
"coherence_score": synthesis_result.get('coherence_score', 0.7),
"source_count": len(synthesis_result.get('source_references', [])),
"has_structured_elements": bool(re.search(r'[•\d+\.]', response)) if response else False
}
def _check_intent_alignment(self, synthesis_result: Dict[str, Any], intent_info: Dict[str, Any]) -> Dict[str, Any]:
"""Check if synthesis aligns with detected intent"""
# Calculate alignment based on intent confidence and response quality
intent_confidence = intent_info.get('confidence', 0.5)
coherence_score = synthesis_result.get('coherence_score', 0.7)
# Alignment is average of intent confidence and coherence
alignment_score = (intent_confidence + coherence_score) / 2.0
return {
"intent_detected": intent_info.get('primary_intent'),
"alignment_score": alignment_score,
"alignment_verified": alignment_score > 0.7
}
def _identify_improvements(self, response: str) -> List[str]:
"""Identify opportunities to improve the response"""
improvements = []
if len(response) < 50:
improvements.append("Could be more detailed")
if "?" not in response and len(response.split()) < 100:
improvements.append("Consider adding examples")
return improvements
def _get_fallback_response(self, user_input: str, agent_outputs: List[Dict[str, Any]],
assigned_consultant: Dict[str, Any]) -> Dict[str, Any]:
"""Provide fallback response when synthesis fails (LLM API failure only)"""
# Only use fallback when LLM API actually fails - not as default
if user_input:
fallback_text = f"Thank you for your question: '{user_input}'. I'm processing your request and will provide a detailed response shortly."
else:
fallback_text = "I apologize, but I encountered an issue processing your request. Please try again."
return {
"synthesized_response": fallback_text,
"draft_response": fallback_text,
"final_response": fallback_text,
"assigned_consultant": assigned_consultant,
"source_references": self._extract_source_references(agent_outputs),
"coherence_score": 0.5,
"improvement_opportunities": ["LLM API error - fallback activated"],
"synthesis_method": "expert_enhanced_fallback",
"agent_id": self.agent_id,
"synthesis_quality_metrics": self._calculate_quality_metrics({"final_response": fallback_text}),
"error": True,
"synthesis_metadata": {"expert_enhanced": True, "error": True, "llm_api_failed": True}
}
# Backward compatibility: ResponseSynthesisAgent is now EnhancedSynthesisAgent
ResponseSynthesisAgent = EnhancedSynthesisAgent
# Factory function for compatibility
def create_synthesis_agent(llm_router) -> EnhancedSynthesisAgent:
"""Factory function to create enhanced synthesis agent"""
return EnhancedSynthesisAgent(llm_router)
|