File size: 20,370 Bytes
092a6ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# context_relevance_classifier.py
"""
Context Relevance Classification Module
Uses LLM inference to identify relevant session contexts and generate dynamic summaries
"""

import logging
import asyncio
from typing import Dict, List, Optional
from datetime import datetime

logger = logging.getLogger(__name__)


class ContextRelevanceClassifier:
    """
    Classify which session contexts are relevant to current conversation
    and generate 2-line summaries for each relevant session
    
    Performance Priority:
    - LLM inference first (accuracy over speed)
    - Parallel processing for multiple sessions
    - Caching for repeated queries
    - Graceful degradation on failures
    """
    
    def __init__(self, llm_router):
        """
        Initialize classifier with LLM router
        
        Args:
            llm_router: LLMRouter instance for inference calls
        """
        self.llm_router = llm_router
        self._relevance_cache = {}  # Cache relevance scores to reduce LLM calls
        self._summary_cache = {}  # Cache summaries to avoid regenerating
        self._cache_ttl = 3600  # 1 hour cache TTL
    
    async def classify_and_summarize_relevant_contexts(self,
                                                      current_input: str,
                                                      session_contexts: List[Dict],
                                                      user_id: str = "Test_Any") -> Dict:
        """
        Main method: Classify relevant contexts AND generate 2-line summaries
        
        Performance Strategy:
        1. Extract current topic (LLM inference - single call)
        2. Calculate relevance in parallel (multiple LLM calls in parallel)
        3. Generate summaries in parallel (only for relevant sessions)
        
        Args:
            current_input: Current user query
            session_contexts: List of session context dictionaries
            user_id: User identifier for logging
        
        Returns:
            {
                'relevant_summaries': List[str],  # 2-line summaries
                'combined_user_context': str,     # Combined summaries
                'relevance_scores': Dict,          # Scores for each session
                'classification_confidence': float,
                'topic': str,
                'processing_time': float
            }
        """
        start_time = datetime.now()
        
        try:
            # Early exit: No contexts to process
            if not session_contexts:
                logger.info("No session contexts provided for classification")
                return {
                    'relevant_summaries': [],
                    'combined_user_context': '',
                    'relevance_scores': {},
                    'classification_confidence': 1.0,
                    'topic': '',
                    'processing_time': 0.0
                }
            
            # Step 1: Extract current topic (LLM inference - OPTION A: Single call)
            current_topic = await self._extract_current_topic(current_input)
            logger.info(f"Extracted current topic: '{current_topic}'")
            
            # Step 2: Calculate relevance scores (parallel processing for performance)
            relevance_tasks = []
            for session_ctx in session_contexts:
                task = self._calculate_relevance_with_cache(
                    current_topic,
                    current_input,
                    session_ctx
                )
                relevance_tasks.append((session_ctx, task))
            
            # Execute all relevance calculations in parallel
            relevance_results = await asyncio.gather(
                *[task for _, task in relevance_tasks],
                return_exceptions=True
            )
            
            # Filter relevant sessions (score >= 0.6)
            relevant_sessions = []
            relevance_scores = {}
            
            for (session_ctx, _), result in zip(relevance_tasks, relevance_results):
                if isinstance(result, Exception):
                    logger.error(f"Error calculating relevance: {result}")
                    continue
                
                session_id = session_ctx.get('session_id', 'unknown')
                score = result.get('score', 0.0)
                relevance_scores[session_id] = score
                
                if score >= 0.6:  # Relevance threshold
                    relevant_sessions.append({
                        'session_id': session_id,
                        'summary': session_ctx.get('summary', ''),
                        'relevance_score': score,
                        'interaction_contexts': session_ctx.get('interaction_contexts', []),
                        'created_at': session_ctx.get('created_at', '')
                    })
            
            logger.info(f"Found {len(relevant_sessions)} relevant sessions out of {len(session_contexts)}")
            
            # Step 3: Generate 2-line summaries for relevant sessions (parallel)
            summary_tasks = []
            for relevant_session in relevant_sessions:
                task = self._generate_session_summary(
                    relevant_session,
                    current_input,
                    current_topic
                )
                summary_tasks.append(task)
            
            # Execute all summaries in parallel
            summary_results = await asyncio.gather(*summary_tasks, return_exceptions=True)
            
            # Filter valid summaries
            valid_summaries = []
            for summary in summary_results:
                if isinstance(summary, str) and summary.strip():
                    valid_summaries.append(summary.strip())
                elif isinstance(summary, Exception):
                    logger.error(f"Error generating summary: {summary}")
            
            # Step 4: Combine summaries into dynamic user context
            combined_user_context = self._combine_summaries(valid_summaries, current_topic)
            
            processing_time = (datetime.now() - start_time).total_seconds()
            
            logger.info(
                f"Relevance classification complete: {len(valid_summaries)} summaries, "
                f"topic '{current_topic}', time: {processing_time:.2f}s"
            )
            
            return {
                'relevant_summaries': valid_summaries,
                'combined_user_context': combined_user_context,
                'relevance_scores': relevance_scores,
                'classification_confidence': 0.8,
                'topic': current_topic,
                'processing_time': processing_time
            }
            
        except Exception as e:
            logger.error(f"Error in relevance classification: {e}", exc_info=True)
            processing_time = (datetime.now() - start_time).total_seconds()
            
            # SAFE FALLBACK: Return empty result (no degradation)
            return {
                'relevant_summaries': [],
                'combined_user_context': '',
                'relevance_scores': {},
                'classification_confidence': 0.0,
                'topic': '',
                'processing_time': processing_time,
                'error': str(e)
            }
    
    async def _extract_current_topic(self, user_input: str) -> str:
        """
        Extract main topic from current input using LLM inference
        
        Performance: Single LLM call with caching
        """
        try:
            # Check cache first
            cache_key = f"topic_{hash(user_input[:200])}"
            if cache_key in self._relevance_cache:
                cached = self._relevance_cache[cache_key]
                if cached.get('timestamp', 0) + self._cache_ttl > datetime.now().timestamp():
                    return cached['value']
            
            if not self.llm_router:
                # Fallback: Simple extraction
                words = user_input.split()[:5]
                return ' '.join(words) if words else 'general query'
            
            prompt = f"""Extract the main topic (2-5 words) from this query:

Query: "{user_input}"

Respond with ONLY the topic name. Maximum 5 words."""
            
            result = await self.llm_router.route_inference(
                task_type="classification",
                prompt=prompt,
                max_tokens=20,
                temperature=0.2  # Low temperature for consistency
            )
            
            topic = result.strip() if result else user_input[:100]
            
            # Cache result
            self._relevance_cache[cache_key] = {
                'value': topic,
                'timestamp': datetime.now().timestamp()
            }
            
            return topic
            
        except Exception as e:
            logger.error(f"Error extracting topic: {e}", exc_info=True)
            # Fallback
            return user_input[:100]
    
    async def _calculate_relevance_with_cache(self,
                                            current_topic: str,
                                            current_input: str,
                                            session_ctx: Dict) -> Dict:
        """
        Calculate relevance score with caching to reduce LLM calls
        
        Returns: {'score': float, 'cached': bool}
        """
        try:
            session_id = session_ctx.get('session_id', 'unknown')
            session_summary = session_ctx.get('summary', '')
            
            # Check cache
            cache_key = f"rel_{session_id}_{hash(current_input[:100] + current_topic)}"
            if cache_key in self._relevance_cache:
                cached = self._relevance_cache[cache_key]
                if cached.get('timestamp', 0) + self._cache_ttl > datetime.now().timestamp():
                    return {'score': cached['value'], 'cached': True}
            
            # Calculate relevance
            score = await self._calculate_relevance(
                current_topic,
                current_input,
                session_summary
            )
            
            # Cache result
            self._relevance_cache[cache_key] = {
                'value': score,
                'timestamp': datetime.now().timestamp()
            }
            
            return {'score': score, 'cached': False}
            
        except Exception as e:
            logger.error(f"Error in cached relevance calculation: {e}", exc_info=True)
            return {'score': 0.5, 'cached': False}  # Neutral score on error
    
    async def _calculate_relevance(self,
                                  current_topic: str,
                                  current_input: str,
                                  context_text: str) -> float:
        """
        Calculate relevance score (0.0 to 1.0) using LLM inference
        
        Performance: Single LLM call per session context
        """
        try:
            if not context_text:
                return 0.0
            
            if not self.llm_router:
                # Fallback: Keyword matching
                return self._simple_keyword_relevance(current_input, context_text)
            
            # OPTION A: Direct relevance scoring (faster, single call)
            # OPTION B: Detailed analysis (more accurate, more tokens)
            # Choosing OPTION A for performance, but with quality prompt
            
            prompt = f"""Rate the relevance (0.0 to 1.0) of this session context to the current conversation.

Current Topic: {current_topic}
Current Query: "{current_input[:200]}"

Session Context:
"{context_text[:500]}"

Consider:
- Topic similarity (0.0-1.0)
- Discussion depth alignment
- Information continuity

Respond with ONLY a number between 0.0 and 1.0 (e.g., 0.75)."""
            
            result = await self.llm_router.route_inference(
                task_type="general_reasoning",
                prompt=prompt,
                max_tokens=10,
                temperature=0.1  # Very low for consistency
            )
            
            if result:
                try:
                    score = float(result.strip())
                    return max(0.0, min(1.0, score))  # Clamp to [0, 1]
                except ValueError:
                    logger.warning(f"Could not parse relevance score: {result}")
            
            # Fallback to keyword matching
            return self._simple_keyword_relevance(current_input, context_text)
            
        except Exception as e:
            logger.error(f"Error calculating relevance: {e}", exc_info=True)
            return 0.5  # Neutral score on error
    
    def _simple_keyword_relevance(self, current_input: str, context_text: str) -> float:
        """Fallback keyword-based relevance calculation"""
        try:
            current_lower = current_input.lower()
            context_lower = context_text.lower()
            
            current_words = set(current_lower.split())
            context_words = set(context_lower.split())
            
            # Remove common stop words for better matching
            stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
            current_words = current_words - stop_words
            context_words = context_words - stop_words
            
            if not current_words:
                return 0.5
            
            # Jaccard similarity
            intersection = len(current_words & context_words)
            union = len(current_words | context_words)
            
            return (intersection / union) if union > 0 else 0.0
            
        except Exception:
            return 0.5
    
    async def _generate_session_summary(self,
                                       session_data: Dict,
                                       current_input: str,
                                       current_topic: str) -> str:
        """
        Generate 2-line summary for a relevant session context
        
        Performance: LLM inference with caching and timeout protection
        Builds depth and width of topic discussion
        """
        try:
            session_id = session_data.get('session_id', 'unknown')
            session_summary = session_data.get('summary', '')
            interaction_contexts = session_data.get('interaction_contexts', [])
            
            # Check cache
            cache_key = f"summary_{session_id}_{hash(current_topic)}"
            if cache_key in self._summary_cache:
                cached = self._summary_cache[cache_key]
                if cached.get('timestamp', 0) + self._cache_ttl > datetime.now().timestamp():
                    return cached['value']
            
            # Validation: Ensure content available
            if not session_summary and not interaction_contexts:
                logger.warning(f"No content for summarization: session {session_id}")
                return f"Previous discussion on {current_topic}.\nContext details unavailable."
            
            # Build context text with limits
            session_context_text = session_summary[:500] if session_summary else ""
            
            if interaction_contexts:
                recent_interactions = "\n".join([
                    ic.get('summary', '')[:100]
                    for ic in interaction_contexts[-5:]
                    if ic.get('summary')
                ])
                if recent_interactions:
                    session_context_text = f"{session_context_text}\n\nRecent interactions:\n{recent_interactions[:400]}"
            
            # Limit total context
            if len(session_context_text) > 1000:
                session_context_text = session_context_text[:1000] + "..."
            
            if not self.llm_router:
                # Fallback
                return f"Previous {current_topic} discussion.\nCovered: {session_summary[:80]}..."
            
            # LLM-based summarization with timeout
            prompt = f"""Generate a precise 2-line summary (maximum 2 sentences, ~100 tokens total) that captures the depth and breadth of the topic discussion:

Current Topic: {current_topic}
Current Query: "{current_input[:150]}"

Previous Session Context:
{session_context_text}

Requirements:
- Line 1: Summarize the MAIN TOPICS/SUBJECTS discussed (breadth/width)
- Line 2: Summarize the DEPTH/LEVEL of discussion (technical depth, detail level, approach)
- Focus on relevance to: "{current_topic}"
- Keep total under 100 tokens
- Be specific about what was covered

Respond with ONLY the 2-line summary, no explanations."""
            
            try:
                result = await asyncio.wait_for(
                    self.llm_router.route_inference(
                        task_type="general_reasoning",
                        prompt=prompt,
                        max_tokens=100,
                        temperature=0.4
                    ),
                    timeout=10.0  # 10 second timeout
                )
            except asyncio.TimeoutError:
                logger.warning(f"Summary generation timeout for session {session_id}")
                return f"Previous {current_topic} discussion.\nDepth and approach covered in prior session."
            
            # Validate and format result
            if result and isinstance(result, str) and result.strip():
                summary = result.strip()
                lines = [line.strip() for line in summary.split('\n') if line.strip()]
                
                if len(lines) >= 1:
                    if len(lines) > 2:
                        combined = f"{lines[0]}\n{'. '.join(lines[1:])}"
                        formatted_summary = combined[:200]
                    else:
                        formatted_summary = '\n'.join(lines[:2])[:200]
                    
                    # Ensure minimum quality
                    if len(formatted_summary) < 20:
                        formatted_summary = f"Previous {current_topic} discussion.\nDetails from previous session."
                    
                    # Cache result
                    self._summary_cache[cache_key] = {
                        'value': formatted_summary,
                        'timestamp': datetime.now().timestamp()
                    }
                    
                    return formatted_summary
                else:
                    return f"Previous {current_topic} discussion.\nContext from previous session."
            
            # Invalid result fallback
            logger.warning(f"Invalid summary result for session {session_id}")
            return f"Previous {current_topic} discussion.\nDepth and approach covered previously."
            
        except Exception as e:
            logger.error(f"Error generating session summary: {e}", exc_info=True)
            session_summary = session_data.get('summary', '')[:100] if session_data.get('summary') else 'topic discussion'
            return f"{session_summary}...\n{current_topic} discussion from previous session."
    
    def _combine_summaries(self, summaries: List[str], current_topic: str) -> str:
        """
        Combine multiple 2-line summaries into coherent user context
        
        Builds width (multiple topics) and depth (summarized discussions)
        """
        try:
            if not summaries:
                return ''
            
            if len(summaries) == 1:
                return summaries[0]
            
            # Format combined summaries with topic focus
            combined = f"Relevant Previous Discussions (Topic: {current_topic}):\n\n"
            
            for idx, summary in enumerate(summaries, 1):
                combined += f"[Session {idx}]\n{summary}\n\n"
            
            # Add summary statement
            combined += f"These sessions provide context for {current_topic} discussions, covering multiple aspects and depth levels."
            
            return combined
            
        except Exception as e:
            logger.error(f"Error combining summaries: {e}", exc_info=True)
            # Simple fallback
            return '\n\n'.join(summaries[:5])