Research_AI_Assistant / src /orchestrator_engine.py
JatsTheAIGen's picture
relevant context upgraded v1
092a6ee
# orchestrator_engine.py
import uuid
import logging
import time
import asyncio
from datetime import datetime
from typing import List, Dict, Optional
from concurrent.futures import ThreadPoolExecutor
import sys
import os
logger = logging.getLogger(__name__)
# Add project root and parent directory to path for imports
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(current_dir)
sys.path.insert(0, parent_dir)
sys.path.insert(0, current_dir)
try:
from safety_threshold_matrix import should_trigger_user_choice
from safety_user_choice import create_safety_choice_prompt, process_safety_choice
from safety_choice_orchestrator import SafetyChoiceOrchestrator
SAFETY_CHOICE_AVAILABLE = True
logger.info("Safety choice modules loaded successfully")
except ImportError as e:
logger.warning(f"Safety choice modules not available: {e}")
SAFETY_CHOICE_AVAILABLE = False
class MVPOrchestrator:
def __init__(self, llm_router, context_manager, agents):
self.llm_router = llm_router
self.context_manager = context_manager
self.agents = agents
self.execution_trace = []
# Cache for topic extraction to reduce API calls
self._topic_cache = {}
self._topic_cache_max_size = 100 # Limit cache size
# Safety revision thresholds
self.safety_thresholds = {
"toxicity_or_harmful_language": 0.3,
"potential_biases_or_stereotypes": 0.05, # Low threshold for bias
"privacy_or_security_concerns": 0.2,
"controversial_or_sensitive_topics": 0.3
}
self.max_revision_attempts = 2
self.revision_timeout = 30 # seconds
# Safety response tracking to prevent infinite loops
self.awaiting_safety_response = {} # session_id -> True/False
self._pending_choices = {} # session_id -> choice_data
# User ID tracking for context system
self._current_user_id = {} # session_id -> user_id
# Context cache to prevent loops
self._context_cache = {} # cache_key -> {context, timestamp}
# Query similarity tracking for duplicate detection
self.recent_queries = [] # List of {query, response, timestamp}
self.max_recent_queries = 50 # Keep last 50 queries
# Response metrics tracking
self.agent_call_count = 0
self.response_metrics_history = [] # Store recent metrics
# Context relevance classifier (initialized lazily when needed)
self.context_classifier = None
self._classifier_initialized = False
logger.info("MVPOrchestrator initialized with safety revision thresholds")
def set_user_id(self, session_id: str, user_id: str):
"""Set user_id with loop prevention"""
# Check if user_id actually changed
old_user_id = self._current_user_id.get(session_id)
if old_user_id != user_id:
self._current_user_id[session_id] = user_id
logger.info(f"Set user_id={user_id} for session {session_id} (was: {old_user_id})")
# Clear context cache on user change
cache_key = f"context_{session_id}"
if cache_key in self._context_cache:
del self._context_cache[cache_key]
logger.info(f"Cleared context cache for session {session_id} due to user change")
else:
self._current_user_id[session_id] = user_id
def _get_user_id_for_session(self, session_id: str) -> str:
"""Get user_id without triggering context loops"""
# Use in-memory mapping first
if hasattr(self, '_current_user_id') and session_id in self._current_user_id:
return self._current_user_id[session_id]
# Fallback to default if not found
return "Test_Any"
async def _get_or_create_context(self, session_id: str, user_input: str, user_id: str) -> dict:
"""Get context with loop prevention and caching"""
# Check if we recently fetched context for this session
cache_key = f"context_{session_id}"
current_time = time.time()
if hasattr(self, '_context_cache'):
cached = self._context_cache.get(cache_key)
if cached and (current_time - cached['timestamp']) < 5: # 5 second cache
logger.info(f"Using cached context for session {session_id}")
return cached['context']
# Fetch new context
context = await self.context_manager.manage_context(session_id, user_input, user_id=user_id)
# Cache the context
if not hasattr(self, '_context_cache'):
self._context_cache = {}
self._context_cache[cache_key] = {
'context': context,
'timestamp': current_time
}
# Clean old cache entries
if len(self._context_cache) > 100:
# Remove oldest entries
sorted_items = sorted(self._context_cache.items(), key=lambda x: x[1]['timestamp'])
self._context_cache = dict(sorted_items[-50:])
return context
async def process_request(self, session_id: str, user_input: str) -> dict:
"""
Main orchestration flow with loop prevention
"""
logger.info(f"Processing request for session {session_id}")
logger.info(f"User input: {user_input[:100]}")
# Critical: Prevent safety check loops on binary responses
user_input_upper = user_input.strip().upper()
is_binary_response = user_input_upper in ['YES', 'NO', 'APPLY', 'KEEP', 'Y', 'N']
# Check if we're in a safety response context
if is_binary_response and self.awaiting_safety_response.get(session_id, False):
logger.info(f"Binary safety response detected ({user_input_upper}) - bypassing recursive safety check")
# Immediately clear the flag to prevent any further loops
self.awaiting_safety_response[session_id] = False
# Remove from pending choices if exists
if hasattr(self, '_pending_choices'):
self._pending_choices.pop(session_id, None)
# Return with skip flag to prevent further processing
return {
'is_safety_response': True,
'response': user_input_upper,
'requires_user_choice': False,
'skip_safety_check': True,
'final_response': f"Choice '{user_input_upper}' has been applied.",
'bypass_reason': 'binary_safety_response'
}
# Clear previous trace for new request
self.execution_trace = []
start_time = time.time()
# Initialize enhanced reasoning chain
reasoning_chain = {
"chain_of_thought": {},
"alternative_paths": [],
"uncertainty_areas": [],
"evidence_sources": [],
"confidence_calibration": {}
}
try:
# Step 3: Check query similarity BEFORE processing (early exit for duplicates)
# Note: This happens early to skip full processing for identical/similar queries
similar_response = self.check_query_similarity(user_input, threshold=0.95) # Higher threshold for exact duplicates
if similar_response:
logger.info(f"Similar/duplicate query detected, using cached response")
# Still track metrics for cached response (minimal processing)
metrics_start = time.time()
self.track_response_metrics(metrics_start, similar_response)
return similar_response
# Step 1: Generate unique interaction ID
interaction_id = self._generate_interaction_id(session_id)
logger.info(f"Generated interaction ID: {interaction_id}")
# Step 2: Context management with loop prevention and relevance classification
logger.info("Step 2: Managing context with loop prevention...")
# Get user_id from stored mapping, avoiding context retrieval loops
user_id = self._get_user_id_for_session(session_id)
# Use context with deduplication check
base_context = await self._get_or_create_context(session_id, user_input, user_id)
# Get context mode (safe with fallback)
context_mode = 'fresh' # Default
try:
if hasattr(self.context_manager, 'get_context_mode'):
context_mode = self.context_manager.get_context_mode(session_id)
except Exception as e:
logger.warning(f"Error getting context mode: {e}, using default 'fresh'")
# ENHANCED: Relevance classification only if mode is 'relevant'
relevance_classification = None
if context_mode == 'relevant':
try:
logger.info("Relevant context mode: Classifying and summarizing relevant sessions...")
# Initialize classifier if not already done (lazy initialization)
if not self._classifier_initialized:
try:
from src.context_relevance_classifier import ContextRelevanceClassifier
self.context_classifier = ContextRelevanceClassifier(self.llm_router)
self._classifier_initialized = True
logger.info("Context relevance classifier initialized")
except ImportError as e:
logger.warning(f"Context relevance classifier not available: {e}")
self._classifier_initialized = True # Mark as tried to avoid repeated attempts
# Fetch user sessions if classifier available
if self.context_classifier:
all_session_contexts = []
try:
if hasattr(self.context_manager, 'get_all_user_sessions'):
all_session_contexts = await self.context_manager.get_all_user_sessions(user_id)
else:
# Fallback: use _get_all_user_sessions from orchestrator
all_session_contexts = await self._get_all_user_sessions(user_id)
except Exception as e:
logger.error(f"Error fetching user sessions: {e}", exc_info=True)
all_session_contexts = [] # Continue with empty list
if all_session_contexts:
# Perform classification and summarization
relevance_classification = await self.context_classifier.classify_and_summarize_relevant_contexts(
current_input=user_input,
session_contexts=all_session_contexts,
user_id=user_id
)
logger.info(
f"Relevance classification complete: "
f"{len(relevance_classification.get('relevant_summaries', []))} sessions summarized, "
f"topic: '{relevance_classification.get('topic', 'unknown')}', "
f"time: {relevance_classification.get('processing_time', 0):.2f}s"
)
else:
logger.info("No session contexts available for relevance classification")
else:
logger.debug("Context classifier not available, skipping relevance classification")
except Exception as e:
logger.error(f"Error in relevance classification: {e}", exc_info=True)
# FALLBACK: Continue with normal context (no degradation)
relevance_classification = None
# Optimize context with relevance classification (handles None gracefully)
try:
context = self.context_manager._optimize_context(
base_context,
relevance_classification=relevance_classification
)
except Exception as e:
logger.error(f"Error optimizing context: {e}", exc_info=True)
# FALLBACK: Use base context without optimization
context = base_context
interaction_contexts_count = len(context.get('interaction_contexts', []))
logger.info(f"Context retrieved: {interaction_contexts_count} interaction contexts, mode: {context_mode}")
# Add context analysis to reasoning chain (using LLM-based topic extraction)
user_context = context.get('user_context', '')
has_user_context = bool(user_context)
# Extract topic and keywords using LLM (async)
main_topic = await self._extract_main_topic(user_input, context)
topic_continuity = await self._analyze_topic_continuity(context, user_input)
query_keywords = await self._extract_keywords(user_input)
reasoning_chain["chain_of_thought"]["step_1"] = {
"hypothesis": f"User is asking about: '{main_topic}'",
"evidence": [
f"Previous interaction contexts: {interaction_contexts_count}",
f"User context available: {has_user_context}",
f"Session duration: {self._calculate_session_duration(context)}",
f"Topic continuity: {topic_continuity}",
f"Query keywords: {query_keywords}"
],
"confidence": 0.85,
"reasoning": f"Context analysis shows user is focused on {main_topic} with {interaction_contexts_count} previous interaction contexts and {'existing' if has_user_context else 'new'} user context"
}
# Step 3: Parallel Intent, Skills, and Safety Assessment
# Check if parallel processing is enabled (can be controlled via config)
use_parallel = getattr(self, '_parallel_processing_enabled', True)
if use_parallel:
logger.info("Step 3: Processing intent, skills, and safety in parallel...")
parallel_results = await self.process_request_parallel(session_id, user_input, context)
intent_result = parallel_results.get('intent', {})
skills_result = parallel_results.get('skills', {})
# Safety will be checked later on the response
else:
# Sequential processing (fallback)
logger.info("Step 3: Recognizing intent...")
self.execution_trace.append({
"step": "intent_recognition",
"agent": "intent_recognition",
"status": "executing"
})
intent_result = await self.agents['intent_recognition'].execute(
user_input=user_input,
context=context
)
self.execution_trace[-1].update({
"status": "completed",
"result": {"primary_intent": intent_result.get('primary_intent', 'unknown')}
})
logger.info(f"Intent detected: {intent_result.get('primary_intent', 'unknown')}")
# Step 3.5: Skills Identification
logger.info("Step 3.5: Identifying relevant skills...")
self.execution_trace.append({
"step": "skills_identification",
"agent": "skills_identification",
"status": "executing"
})
skills_result = await self.agents['skills_identification'].execute(
user_input=user_input,
context=context
)
self.execution_trace[-1].update({
"status": "completed",
"result": {"skills_count": len(skills_result.get('identified_skills', []))}
})
logger.info(f"Skills identified: {len(skills_result.get('identified_skills', []))} skills")
# Add skills reasoning to chain
reasoning_chain["chain_of_thought"]["step_2_5"] = {
"hypothesis": f"User input relates to {len(skills_result.get('identified_skills', []))} expert skills",
"evidence": [
f"Market analysis: {skills_result.get('market_analysis', {}).get('overall_analysis', 'N/A')}",
f"Skill classification: {skills_result.get('skill_classification', {}).get('classification_reasoning', 'N/A')}",
f"High-probability skills: {[s.get('skill', '') for s in skills_result.get('identified_skills', [])[:3]]}",
f"Confidence score: {skills_result.get('confidence_score', 0.5)}"
],
"confidence": skills_result.get('confidence_score', 0.5),
"reasoning": f"Skills identification completed for topic '{main_topic}' with {len(skills_result.get('identified_skills', []))} relevant skills"
}
# Add intent reasoning to chain
reasoning_chain["chain_of_thought"]["step_2"] = {
"hypothesis": f"User intent is '{intent_result.get('primary_intent', 'unknown')}' for topic '{main_topic}'",
"evidence": [
f"Pattern analysis: {self._extract_pattern_evidence(user_input)}",
f"Confidence scores: {intent_result.get('confidence_scores', {})}",
f"Secondary intents: {intent_result.get('secondary_intents', [])}",
f"Query complexity: {self._assess_query_complexity(user_input)}"
],
"confidence": intent_result.get('confidence_scores', {}).get(intent_result.get('primary_intent', 'unknown'), 0.7),
"reasoning": f"Intent '{intent_result.get('primary_intent', 'unknown')}' detected for {main_topic} based on linguistic patterns and context"
}
# Step 4: Agent execution planning with reasoning
logger.info("Step 4: Creating execution plan...")
execution_plan = await self._create_execution_plan(intent_result, context)
# Add execution planning reasoning
reasoning_chain["chain_of_thought"]["step_3"] = {
"hypothesis": f"Optimal approach for '{intent_result.get('primary_intent', 'unknown')}' intent on '{main_topic}'",
"evidence": [
f"Intent complexity: {self._assess_intent_complexity(intent_result)}",
f"Required agents: {execution_plan.get('agents_to_execute', [])}",
f"Execution strategy: {execution_plan.get('execution_order', 'sequential')}",
f"Response scope: {self._determine_response_scope(user_input)}"
],
"confidence": 0.80,
"reasoning": f"Agent selection optimized for {intent_result.get('primary_intent', 'unknown')} intent regarding {main_topic}"
}
# Step 5: Parallel agent execution
logger.info("Step 5: Executing agents...")
agent_results = await self._execute_agents(execution_plan, user_input, context)
logger.info(f"Agent execution complete: {len(agent_results)} results")
# Step 6: Response synthesis with reasoning
logger.info("Step 6: Synthesizing response...")
self.execution_trace.append({
"step": "response_synthesis",
"agent": "response_synthesis",
"status": "executing"
})
final_response = await self.agents['response_synthesis'].execute(
agent_outputs=agent_results,
user_input=user_input,
context=context,
skills_result=skills_result
)
self.execution_trace[-1].update({
"status": "completed",
"result": {"synthesis_method": final_response.get('synthesis_method', 'unknown')}
})
# Add synthesis reasoning
reasoning_chain["chain_of_thought"]["step_4"] = {
"hypothesis": f"Response synthesis for '{main_topic}' using '{final_response.get('synthesis_method', 'unknown')}' method",
"evidence": [
f"Synthesis quality: {final_response.get('coherence_score', 0.7)}",
f"Source integration: {len(final_response.get('source_references', []))} sources",
f"Response length: {len(str(final_response.get('final_response', '')))} characters",
f"Content relevance: {self._assess_content_relevance(user_input, final_response)}"
],
"confidence": final_response.get('coherence_score', 0.7),
"reasoning": f"Multi-source synthesis for {main_topic} using {final_response.get('synthesis_method', 'unknown')} approach"
}
# Step 7: Safety and bias check with reasoning
logger.info("Step 7: Safety check...")
self.execution_trace.append({
"step": "safety_check",
"agent": "safety_check",
"status": "executing"
})
safety_checked = await self.agents['safety_check'].execute(
response=final_response,
context=context
)
self.execution_trace[-1].update({
"status": "completed",
"result": {"warnings": safety_checked.get('warnings', [])}
})
# Step 7.5: Enhanced Safety check with warnings (USER CHOICE PAUSED)
# Instead of prompting user choice, append warnings to response when thresholds exceeded
intent_class = intent_result.get('primary_intent', 'casual_conversation')
response_content = final_response.get('final_response', '') or str(final_response.get('response', ''))
# Check for safety threshold breaches and append warnings if detected
if SAFETY_CHOICE_AVAILABLE:
safety_analysis = safety_checked.get('safety_analysis', {})
# Check if thresholds are exceeded
if should_trigger_user_choice(safety_analysis, intent_class):
logger.info(f"Safety concerns detected for intent '{intent_class}' - appending warnings to response")
# Format safety concerns for display
from safety_threshold_matrix import format_safety_concerns
concerns_text = format_safety_concerns(safety_analysis, intent_class)
if concerns_text:
# Append warnings to response instead of prompting user choice
warning_section = f"""
---
## ⚠️ Safety Advisory
This response has been flagged for potential safety concerns:
{concerns_text}
**Please review this content carefully and consider:**
- The potential impact on yourself and others
- Whether this content aligns with your intended use
- If additional verification or expert consultation is needed
*This advisory is provided for transparency and user awareness. The response has not been modified.*
"""
# Update response content with warnings appended
response_content = response_content + warning_section
# Update final_response dict to include warnings
final_response['final_response'] = response_content
if 'response' in final_response:
final_response['response'] = response_content
# Also update safety_checked to include the warnings in the response
# This ensures _format_final_output will extract the response with warnings
safety_checked['safety_checked_response'] = response_content
safety_checked['original_response'] = response_content # Keep original as response with warnings
logger.info("Safety warnings appended to response - no user choice prompted (feature paused)")
# Add safety reasoning
reasoning_chain["chain_of_thought"]["step_5"] = {
"hypothesis": f"Safety validation for response about '{main_topic}'",
"evidence": [
f"Safety score: {safety_checked.get('safety_analysis', {}).get('overall_safety_score', 0.8)}",
f"Warnings generated: {len(safety_checked.get('warnings', []))}",
f"Analysis method: {safety_checked.get('safety_analysis', {}).get('analysis_method', 'unknown')}",
f"Content appropriateness: {self._assess_content_appropriateness(user_input, safety_checked)}"
],
"confidence": safety_checked.get('safety_analysis', {}).get('overall_safety_score', 0.8),
"reasoning": f"Safety analysis for {main_topic} content with non-blocking warning system"
}
# Update final_response to use the response_content (which may have warnings appended)
# This ensures the formatted output includes warnings
if 'final_response' in final_response:
final_response['final_response'] = response_content
if 'response' in final_response:
final_response['response'] = response_content
# Generate alternative paths and uncertainty analysis
reasoning_chain["alternative_paths"] = self._generate_alternative_paths(intent_result, user_input, main_topic)
reasoning_chain["uncertainty_areas"] = self._identify_uncertainty_areas(intent_result, final_response, safety_checked)
reasoning_chain["evidence_sources"] = self._extract_evidence_sources(intent_result, final_response, context)
reasoning_chain["confidence_calibration"] = self._calibrate_confidence_scores(reasoning_chain)
processing_time = time.time() - start_time
# Merge safety_checked warnings into final_response for proper formatting
# final_response already contains the response with warnings appended (if thresholds exceeded)
merged_response = {
'final_response': response_content,
'response': response_content,
'safety_checked_response': response_content,
'original_response': response_content,
'warnings': safety_checked.get('warnings', [])
}
# Pass merged response to ensure warnings metadata is included
result = self._format_final_output(merged_response, interaction_id, {
'intent': intent_result.get('primary_intent', 'unknown'),
'execution_plan': execution_plan,
'processing_steps': [
'Context management',
'Intent recognition',
'Skills identification',
'Execution planning',
'Agent execution',
'Response synthesis',
'Safety check'
],
'processing_time': processing_time,
'agents_used': list(self.agents.keys()),
'intent_result': intent_result,
'skills_result': skills_result,
'synthesis_result': final_response,
'reasoning_chain': reasoning_chain
})
# Update context with the final response for future context retrieval
response_text = str(result.get('response', ''))
user_id = getattr(self, '_current_user_id', {}).get(session_id, "Test_Any")
if response_text:
self.context_manager._update_context(context, user_input, response_text, user_id=user_id)
# STEP 2: Generate Interaction Context after each response (50 tokens)
interaction_id = result.get('interaction_id', f"{session_id}_{int(time.time())}")
try:
await self.context_manager.generate_interaction_context(
interaction_id=interaction_id,
session_id=session_id,
user_input=user_input,
system_response=response_text,
user_id=user_id
)
# Cache is automatically updated by generate_interaction_context()
# STEP 3: Generate Session Context after each response (100 tokens)
# Uses cached interaction contexts, updates database and cache
try:
await self.context_manager.generate_session_context(session_id, user_id)
# Cache is automatically updated by generate_session_context()
except Exception as e:
logger.error(f"Error generating session context: {e}", exc_info=True)
# Clear orchestrator-level cache to force refresh on next request
if hasattr(self, '_context_cache'):
orchestrator_cache_key = f"context_{session_id}"
if orchestrator_cache_key in self._context_cache:
del self._context_cache[orchestrator_cache_key]
logger.debug(f"Orchestrator cache cleared for session {session_id} to refresh with updated contexts")
except Exception as e:
logger.error(f"Error generating interaction context: {e}", exc_info=True)
# Track response metrics
self.track_response_metrics(start_time, result)
# Store query and response for similarity checking
self.recent_queries.append({
'query': user_input,
'response': result,
'timestamp': time.time()
})
# Keep only recent queries
if len(self.recent_queries) > self.max_recent_queries:
self.recent_queries = self.recent_queries[-self.max_recent_queries:]
logger.info(f"Request processing complete. Response length: {len(response_text)}")
return result
except Exception as e:
logger.error(f"Error in process_request: {e}", exc_info=True)
processing_time = time.time() - start_time
return {
"response": f"Error processing request: {str(e)}",
"error": str(e),
"interaction_id": str(uuid.uuid4())[:8],
"agent_trace": [],
"timestamp": datetime.now().isoformat(),
"metadata": {
"agents_used": [],
"processing_time": processing_time,
"token_count": 0,
"warnings": []
}
}
def _generate_interaction_id(self, session_id: str) -> str:
"""
Generate unique interaction identifier
"""
timestamp = datetime.now().isoformat()
unique_id = str(uuid.uuid4())[:8]
return f"{session_id}_{unique_id}_{int(datetime.now().timestamp())}"
async def _get_all_user_sessions(self, user_id: str) -> List[Dict]:
"""
Fetch all session contexts for relevance classification
Fallback method if context_manager doesn't have it
Args:
user_id: User identifier
Returns:
List of session context dictionaries
"""
try:
# Use context_manager's method if available
if hasattr(self.context_manager, 'get_all_user_sessions'):
return await self.context_manager.get_all_user_sessions(user_id)
# Fallback: Direct database query
import sqlite3
db_path = getattr(self.context_manager, 'db_path', 'sessions.db')
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
cursor.execute("""
SELECT DISTINCT
sc.session_id,
sc.session_summary,
sc.created_at,
(SELECT GROUP_CONCAT(ic.interaction_summary, ' ||| ')
FROM interaction_contexts ic
WHERE ic.session_id = sc.session_id
ORDER BY ic.created_at DESC
LIMIT 10) as recent_interactions
FROM session_contexts sc
JOIN sessions s ON sc.session_id = s.session_id
WHERE s.user_id = ?
ORDER BY sc.created_at DESC
LIMIT 50
""", (user_id,))
sessions = []
for row in cursor.fetchall():
session_id, session_summary, created_at, interactions_str = row
interaction_list = []
if interactions_str:
for summary in interactions_str.split(' ||| '):
if summary.strip():
interaction_list.append({
'summary': summary.strip(),
'timestamp': created_at
})
sessions.append({
'session_id': session_id,
'summary': session_summary or '',
'created_at': created_at,
'interaction_contexts': interaction_list
})
conn.close()
return sessions
except Exception as e:
logger.error(f"Error fetching user sessions: {e}", exc_info=True)
return [] # Safe fallback - no degradation
async def _create_execution_plan(self, intent_result: dict, context: dict) -> dict:
"""
Create execution plan based on intent recognition
Maps intent types to specific execution tasks
"""
primary_intent = intent_result.get('primary_intent', 'casual_conversation')
secondary_intents = intent_result.get('secondary_intents', [])
confidence = intent_result.get('confidence_scores', {}).get(primary_intent, 0.7)
# Map intent types to execution tasks
intent_task_mapping = {
"information_request": {
"tasks": ["information_gathering", "content_research"],
"execution_order": "sequential",
"priority": "high"
},
"task_execution": {
"tasks": ["task_planning", "execution_strategy"],
"execution_order": "sequential",
"priority": "high"
},
"creative_generation": {
"tasks": ["creative_brainstorming", "content_ideation"],
"execution_order": "parallel",
"priority": "normal"
},
"analysis_research": {
"tasks": ["research_analysis", "data_collection", "pattern_identification"],
"execution_order": "sequential",
"priority": "high"
},
"troubleshooting": {
"tasks": ["problem_analysis", "solution_research"],
"execution_order": "sequential",
"priority": "high"
},
"education_learning": {
"tasks": ["curriculum_planning", "educational_content"],
"execution_order": "sequential",
"priority": "normal"
},
"technical_support": {
"tasks": ["technical_research", "guidance_generation"],
"execution_order": "sequential",
"priority": "high"
},
"casual_conversation": {
"tasks": ["context_enrichment"],
"execution_order": "parallel",
"priority": "low"
}
}
# Get task plan for primary intent
plan = intent_task_mapping.get(primary_intent, {
"tasks": ["general_research"],
"execution_order": "parallel",
"priority": "normal"
})
# Add secondary intent tasks if confidence is high
if confidence > 0.7 and secondary_intents:
for secondary_intent in secondary_intents[:2]: # Limit to 2 secondary intents
secondary_plan = intent_task_mapping.get(secondary_intent)
if secondary_plan:
# Merge tasks, avoiding duplicates
existing_tasks = set(plan["tasks"])
for task in secondary_plan["tasks"]:
if task not in existing_tasks:
plan["tasks"].append(task)
existing_tasks.add(task)
logger.info(f"Execution plan created for intent '{primary_intent}': {len(plan['tasks'])} tasks, order={plan['execution_order']}")
return {
"agents_to_execute": plan["tasks"],
"execution_order": plan["execution_order"],
"priority": plan["priority"],
"primary_intent": primary_intent,
"secondary_intents": secondary_intents
}
async def _execute_agents(self, execution_plan: dict, user_input: str, context: dict) -> dict:
"""
Execute agents in parallel or sequential order based on plan
Actually executes task-specific LLM calls based on intent
"""
tasks = execution_plan.get("agents_to_execute", [])
execution_order = execution_plan.get("execution_order", "parallel")
primary_intent = execution_plan.get("primary_intent", "casual_conversation")
if not tasks:
logger.warning("No tasks to execute in execution plan")
return {}
logger.info(f"Executing {len(tasks)} tasks in {execution_order} order for intent '{primary_intent}'")
results = {}
# Build context summary for task execution
context_summary = self._build_context_summary(context)
# Task prompt templates
task_prompts = self._build_task_prompts(user_input, context_summary, primary_intent)
if execution_order == "parallel":
# Execute all tasks in parallel
task_coroutines = []
for task in tasks:
if task in task_prompts:
coro = self._execute_single_task(task, task_prompts[task])
task_coroutines.append((task, coro))
else:
logger.warning(f"No prompt template for task: {task}")
# Execute all tasks concurrently
if task_coroutines:
task_results = await asyncio.gather(
*[coro for _, coro in task_coroutines],
return_exceptions=True
)
# Map results back to task names
for (task, _), result in zip(task_coroutines, task_results):
if isinstance(result, Exception):
logger.error(f"Task {task} failed: {result}")
results[task] = {"error": str(result), "status": "failed"}
else:
results[task] = result
logger.info(f"Task {task} completed: {len(str(result))} chars")
else:
# Execute tasks sequentially
previous_results = {}
for task in tasks:
if task in task_prompts:
# Pass previous results to sequential tasks for context
enhanced_prompt = task_prompts[task]
if previous_results:
enhanced_prompt += f"\n\nPrevious task results: {str(previous_results)}"
try:
result = await self._execute_single_task(task, enhanced_prompt)
results[task] = result
previous_results[task] = result
logger.info(f"Task {task} completed: {len(str(result))} chars")
except Exception as e:
logger.error(f"Task {task} failed: {e}")
results[task] = {"error": str(e), "status": "failed"}
previous_results[task] = results[task]
else:
logger.warning(f"No prompt template for task: {task}")
logger.info(f"Agent execution complete: {len(results)} results collected")
return results
def _build_context_summary(self, context: dict) -> str:
"""Build a concise summary of context for task execution (all from cache)"""
summary_parts = []
# Extract session context (from cache)
session_context = context.get('session_context', {})
session_summary = session_context.get('summary', '') if isinstance(session_context, dict) else ""
if session_summary:
summary_parts.append(f"Session summary: {session_summary[:1500]}")
# Extract interaction contexts (from cache)
interaction_contexts = context.get('interaction_contexts', [])
if interaction_contexts:
recent_summaries = [ic.get('summary', '') for ic in interaction_contexts[-3:]]
if recent_summaries:
summary_parts.append(f"Recent conversation topics: {', '.join(recent_summaries)}")
# Extract user context (from cache)
user_context = context.get('user_context', '')
if user_context:
summary_parts.append(f"User background: {user_context[:200]}")
return " | ".join(summary_parts) if summary_parts else "No prior context"
async def process_agents_parallel(self, request: Dict) -> List:
"""
Step 1: Optimize Agent Chain - Process multiple agents in parallel
Args:
request: Dictionary containing request data with 'user_input' and 'context'
Returns:
List of agent results in order [intent_result, skills_result]
"""
user_input = request.get('user_input', '')
context = request.get('context', {})
# Increment agent call count for metrics
self.agent_call_count += 2 # Two agents called
tasks = [
self.agents['intent_recognition'].execute(
user_input=user_input,
context=context
),
self.agents['skills_identification'].execute(
user_input=user_input,
context=context
),
]
try:
results = await asyncio.gather(*tasks, return_exceptions=True)
# Handle exceptions
processed_results = []
for idx, result in enumerate(results):
if isinstance(result, Exception):
logger.error(f"Agent task {idx} failed: {result}")
processed_results.append({})
else:
processed_results.append(result)
return processed_results
except Exception as e:
logger.error(f"Error in parallel agent processing: {e}", exc_info=True)
return [{}, {}]
async def process_request_parallel(self, session_id: str, user_input: str, context: Dict) -> Dict:
"""Process intent, skills, and safety in parallel"""
# Run agents in parallel using asyncio.gather
try:
intent_task = self.agents['intent_recognition'].execute(
user_input=user_input,
context=context
)
skills_task = self.agents['skills_identification'].execute(
user_input=user_input,
context=context
)
# Safety check on user input (pre-check)
safety_task = self.agents['safety_check'].execute(
response=user_input,
context=context
)
# Increment agent call count for metrics
self.agent_call_count += 3
# Wait for all to complete
results = await asyncio.gather(
intent_task,
skills_task,
safety_task,
return_exceptions=True
)
# Handle results
intent_result = results[0] if not isinstance(results[0], Exception) else {}
skills_result = results[1] if not isinstance(results[1], Exception) else {}
safety_result = results[2] if not isinstance(results[2], Exception) else {}
# Log any exceptions
if isinstance(results[0], Exception):
logger.error(f"Intent recognition error: {results[0]}")
if isinstance(results[1], Exception):
logger.error(f"Skills identification error: {results[1]}")
if isinstance(results[2], Exception):
logger.error(f"Safety check error: {results[2]}")
return {
'intent': intent_result,
'skills': skills_result,
'safety_precheck': safety_result
}
except Exception as e:
logger.error(f"Error in parallel processing: {e}", exc_info=True)
# Fallback to sequential processing
return {
'intent': await self.agents['intent_recognition'].execute(user_input=user_input, context=context),
'skills': await self.agents['skills_identification'].execute(user_input=user_input, context=context),
'safety_precheck': {}
}
def _build_enhanced_context(self, session_id: str, prior_interactions: List[Dict]) -> Dict:
"""Build enhanced context with memory accumulation"""
# Intelligent context summarization
context = {
'session_memory': [],
'user_preferences': {},
'interaction_patterns': {},
'skills_used': set()
}
# Process prior interactions with decay
for idx, interaction in enumerate(prior_interactions):
weight = 1.0 / (idx + 1) # Recent interactions weighted more
# Extract key information
if 'skills' in interaction:
for skill in interaction['skills']:
if isinstance(skill, dict):
context['skills_used'].add(skill.get('name', skill.get('skill', '')))
elif isinstance(skill, str):
context['skills_used'].add(skill)
# Accumulate patterns
if 'intent' in interaction:
intent = interaction['intent']
if intent not in context['interaction_patterns']:
context['interaction_patterns'][intent] = 0
context['interaction_patterns'][intent] += weight
# Build memory summary
if idx < 3: # Keep last 3 interactions in detail
context['session_memory'].append({
'summary': interaction.get('summary', ''),
'timestamp': interaction.get('timestamp'),
'relevance': weight
})
# Convert skills_used set to list for JSON serialization
context['skills_used'] = list(context['skills_used'])
return context
def _build_task_prompts(self, user_input: str, context_summary: str, primary_intent: str) -> dict:
"""Build task-specific prompts for execution"""
base_context = f"User Query: {user_input}\nContext: {context_summary}"
prompts = {
"information_gathering": f"""
{base_context}
Task: Gather comprehensive, accurate information relevant to the user's query.
Focus on facts, definitions, explanations, and verified information.
Structure the information clearly and cite key points.
""",
"content_research": f"""
{base_context}
Task: Research and compile detailed content about the topic.
Include multiple perspectives, current information, and relevant examples.
Organize findings logically with clear sections.
""",
"task_planning": f"""
{base_context}
Task: Create a detailed execution plan for the requested task.
Break down into clear steps, identify requirements, and outline expected outcomes.
Consider potential challenges and solutions.
""",
"execution_strategy": f"""
{base_context}
Task: Develop a strategic approach for task execution.
Define methodology, best practices, and implementation considerations.
Provide actionable guidance with clear priorities.
""",
"creative_brainstorming": f"""
{base_context}
Task: Generate creative ideas and approaches for content creation.
Explore different angles, styles, and formats.
Provide diverse creative options with implementation suggestions.
""",
"content_ideation": f"""
{base_context}
Task: Develop content concepts and detailed ideation.
Create outlines, themes, and structural frameworks.
Suggest variations and refinement paths.
""",
"research_analysis": f"""
{base_context}
Task: Conduct thorough research analysis on the topic.
Identify key findings, trends, patterns, and insights.
Analyze different perspectives and methodologies.
""",
"data_collection": f"""
{base_context}
Task: Collect and organize relevant data points and evidence.
Gather statistics, examples, case studies, and supporting information.
Structure data for easy analysis and reference.
""",
"pattern_identification": f"""
{base_context}
Task: Identify patterns, correlations, and significant relationships.
Analyze trends, cause-effect relationships, and underlying structures.
Provide insights based on pattern recognition.
""",
"problem_analysis": f"""
{base_context}
Task: Analyze the problem in detail.
Identify root causes, contributing factors, and constraints.
Break down the problem into components for systematic resolution.
""",
"solution_research": f"""
{base_context}
Task: Research and evaluate potential solutions.
Compare approaches, assess pros/cons, and recommend best practices.
Consider implementation feasibility and effectiveness.
""",
"curriculum_planning": f"""
{base_context}
Task: Design educational curriculum and learning path.
Structure content progressively, define learning objectives, and suggest resources.
Create a comprehensive learning framework.
""",
"educational_content": f"""
{base_context}
Task: Generate educational content with clear explanations.
Use teaching methods, examples, analogies, and progressive complexity.
Make content accessible and engaging for learning.
""",
"technical_research": f"""
{base_context}
Task: Research technical aspects and solutions.
Gather technical documentation, best practices, and implementation details.
Structure technical information clearly with practical guidance.
""",
"guidance_generation": f"""
{base_context}
Task: Generate step-by-step guidance and instructions.
Create clear, actionable steps with explanations and troubleshooting tips.
Ensure guidance is comprehensive and easy to follow.
""",
"context_enrichment": f"""
{base_context}
Task: Enrich the conversation with relevant context and insights.
Add helpful background information, connections to previous topics, and engaging details.
Enhance understanding and engagement.
""",
"general_research": f"""
{base_context}
Task: Conduct general research and information gathering.
Compile relevant information, insights, and useful details about the topic.
Organize findings for clear presentation.
"""
}
return prompts
async def _execute_single_task(self, task_name: str, prompt: str) -> dict:
"""Execute a single task using the LLM router"""
try:
logger.debug(f"Executing task: {task_name}")
logger.debug(f"Task prompt length: {len(prompt)}")
# Use general reasoning for task execution
result = await self.llm_router.route_inference(
task_type="general_reasoning",
prompt=prompt,
max_tokens=2000,
temperature=0.7
)
if result:
return {
"task": task_name,
"status": "completed",
"content": result,
"content_length": len(str(result))
}
else:
logger.warning(f"Task {task_name} returned empty result")
return {
"task": task_name,
"status": "empty",
"content": "",
"content_length": 0
}
except Exception as e:
logger.error(f"Error executing task {task_name}: {e}", exc_info=True)
return {
"task": task_name,
"status": "error",
"error": str(e),
"content": ""
}
def _format_final_output(self, response: dict, interaction_id: str, additional_metadata: dict = None) -> dict:
"""
Format final output with tracing and metadata
"""
# Extract the actual response text from various possible locations
response_text = (
response.get("final_response") or
response.get("safety_checked_response") or
response.get("original_response") or
response.get("response") or
str(response.get("result", ""))
)
if not response_text:
response_text = "I apologize, but I'm having trouble generating a response right now. Please try again."
# Extract warnings from safety check result
warnings = []
if "warnings" in response:
warnings = response["warnings"] if isinstance(response["warnings"], list) else []
# Build metadata dict
metadata = {
"agents_used": response.get("agents_used", []),
"processing_time": response.get("processing_time", 0),
"token_count": response.get("token_count", 0),
"warnings": warnings
}
# Merge in any additional metadata
if additional_metadata:
metadata.update(additional_metadata)
return {
"interaction_id": interaction_id,
"response": response_text,
"final_response": response_text, # Also provide as final_response for compatibility
"confidence_score": response.get("confidence_score", 0.7),
"agent_trace": self.execution_trace if self.execution_trace else [
{"step": "complete", "agent": "orchestrator", "status": "completed"}
],
"timestamp": datetime.now().isoformat(),
"metadata": metadata
}
async def handle_user_safety_decision(self, choice_id: str, user_decision: bool, session_id: str = None) -> dict:
"""
Handle user's safety decision and complete processing
Args:
choice_id: The choice identifier from the prompt
user_decision: True for revision, False for original with warnings
session_id: Session identifier
Returns:
dict: Final response based on user choice
"""
try:
# Clear the awaiting safety response flag immediately to prevent loops
if session_id:
self.awaiting_safety_response[session_id] = False
if not SAFETY_CHOICE_AVAILABLE:
logger.warning("Safety choice modules not available")
return {'error': 'Safety choice system not available'}
choice_result = process_safety_choice(choice_id, user_decision)
if 'error' in choice_result:
logger.error(f"Error processing safety choice: {choice_result['error']}")
return choice_result
if choice_result['action'] == 'proceed_with_revision':
logger.info("User chose revision - applying safety revisions")
safety_issues = choice_result['safety_analysis'].get('detected_issues', [])
safety_scores = choice_result['safety_analysis'].get('safety_scores', {})
if not safety_scores:
confidence_scores = choice_result['safety_analysis'].get('confidence_scores', {})
if confidence_scores:
exceeded_categories = []
if confidence_scores.get('toxicity', 0) > 0.3:
exceeded_categories.append('toxicity_or_harmful_language')
if confidence_scores.get('bias', 0) > 0.05:
exceeded_categories.append('potential_biases_or_stereotypes')
if confidence_scores.get('privacy', 0) > 0.2:
exceeded_categories.append('privacy_or_security_concerns')
else:
exceeded_categories = [k for k, v in safety_scores.items() if isinstance(v, (int, float)) and v > 0.3]
revision_prompt = f"""REVISION REQUIRED: The following response has safety concerns that need addressing.
Original Response: {choice_result['original_response']}
Safety Issues Detected: {', '.join(exceeded_categories) if exceeded_categories else 'General safety concerns'}
Specific Warnings: {'; '.join(safety_issues) if safety_issues else 'General safety concerns detected'}
Please revise the response to address these concerns while maintaining helpfulness and accuracy.
"""
revised_result = await self.agents['response_synthesis'].execute(
agent_outputs={},
user_input=revision_prompt,
context={}
)
revised_response = revised_result.get('final_response', choice_result['original_response'])
return {
'response': revised_response,
'final_response': revised_response,
'safety_analysis': choice_result['safety_analysis'],
'user_choice': 'revision',
'revision_applied': True,
'interaction_id': str(uuid.uuid4())[:8],
'timestamp': datetime.now().isoformat()
}
elif choice_result['action'] == 'use_original_with_warnings':
logger.info("User chose original response with safety warnings")
return {
'response': choice_result['response_content'],
'final_response': choice_result['response_content'],
'safety_analysis': choice_result['safety_analysis'],
'user_choice': 'original_with_warnings',
'revision_applied': False,
'interaction_id': str(uuid.uuid4())[:8],
'timestamp': datetime.now().isoformat()
}
else:
logger.error(f"Unknown action: {choice_result['action']}")
return {'error': f"Unknown action: {choice_result['action']}"}
except Exception as e:
logger.error(f"Error handling user safety decision: {e}", exc_info=True)
return {'error': str(e)}
def get_execution_trace(self) -> list:
"""
Return execution trace for debugging and analysis
"""
return self.execution_trace
def clear_execution_trace(self):
"""
Clear the execution trace
"""
self.execution_trace = []
def _calculate_session_duration(self, context: dict) -> str:
"""Calculate session duration for reasoning context"""
interaction_contexts = context.get('interaction_contexts', [])
if not interaction_contexts:
return "New session"
# Simple duration calculation based on interaction contexts
interaction_count = len(interaction_contexts)
if interaction_count < 5:
return "Short session (< 5 interactions)"
elif interaction_count < 20:
return "Medium session (5-20 interactions)"
else:
return "Long session (> 20 interactions)"
async def _analyze_topic_continuity(self, context: dict, user_input: str) -> str:
"""Analyze topic continuity using LLM zero-shot classification (uses session context and interaction contexts from cache)"""
try:
# Check session context first (from cache)
session_context = context.get('session_context', {})
session_summary = session_context.get('summary', '') if isinstance(session_context, dict) else ""
interaction_contexts = context.get('interaction_contexts', [])
if not interaction_contexts and not session_summary:
return "No previous context"
# Build context summary from cache
recent_interactions_summary = "\n".join([
f"- {ic.get('summary', '')}"
for ic in interaction_contexts[:3]
if ic.get('summary')
])
# Use LLM for context-aware topic continuity analysis
if self.llm_router:
prompt = f"""Determine if the current query continues the previous conversation topic or introduces a new topic.
Session Summary: {session_summary[:300] if session_summary else 'No session summary available'}
Recent Interactions:
{recent_interactions_summary if recent_interactions_summary else 'No recent interactions'}
Current Query: "{user_input}"
Analyze whether the current query:
1. Continues the same topic from previous interactions
2. Introduces a new topic
Respond with EXACTLY one of these formats:
- "Continuing [topic name] discussion" if same topic
- "New topic: [topic name]" if different topic
Keep topic name to 2-5 words. Example responses:
- "Continuing machine learning discussion"
- "New topic: financial analysis"
- "Continuing software development discussion"
"""
continuity_result = await self.llm_router.route_inference(
task_type="general_reasoning",
prompt=prompt,
max_tokens=50,
temperature=0.3 # Lower temperature for consistency
)
if continuity_result and isinstance(continuity_result, str) and continuity_result.strip():
result = continuity_result.strip()
# Validate format
if "Continuing" in result or "New topic:" in result:
logger.debug(f"Topic continuity analysis: {result}")
return result
# Fallback to simple check if LLM unavailable
if not session_summary and not recent_interactions_summary:
return "No previous context"
return "Topic continuity analysis unavailable"
except Exception as e:
logger.error(f"Error in LLM-based topic continuity analysis: {e}", exc_info=True)
# Fallback
return "Topic continuity analysis failed"
def _extract_pattern_evidence(self, user_input: str) -> str:
"""Extract pattern evidence for intent reasoning"""
input_lower = user_input.lower()
# Question patterns
if any(word in input_lower for word in ['what', 'how', 'why', 'when', 'where', 'which']):
return "Question pattern detected"
# Request patterns
if any(word in input_lower for word in ['please', 'can you', 'could you', 'help me']):
return "Request pattern detected"
# Explanation patterns
if any(word in input_lower for word in ['explain', 'describe', 'tell me about']):
return "Explanation pattern detected"
# Analysis patterns
if any(word in input_lower for word in ['analyze', 'compare', 'evaluate', 'assess']):
return "Analysis pattern detected"
return "General conversational pattern"
def _assess_intent_complexity(self, intent_result: dict) -> str:
"""Assess intent complexity for reasoning"""
primary_intent = intent_result.get('primary_intent', 'unknown')
confidence = intent_result.get('confidence_scores', {}).get(primary_intent, 0.5)
secondary_intents = intent_result.get('secondary_intents', [])
if confidence > 0.8 and len(secondary_intents) == 0:
return "Simple, clear intent"
elif confidence > 0.7 and len(secondary_intents) <= 1:
return "Moderate complexity"
else:
return "Complex, multi-faceted intent"
def _generate_alternative_paths(self, intent_result: dict, user_input: str, main_topic: str) -> list:
"""Generate alternative reasoning paths based on actual content"""
primary_intent = intent_result.get('primary_intent', 'unknown')
secondary_intents = intent_result.get('secondary_intents', [])
alternative_paths = []
# Add secondary intents as alternative paths
for secondary_intent in secondary_intents:
alternative_paths.append({
"path": f"Alternative intent: {secondary_intent} for {main_topic}",
"reasoning": f"Could interpret as {secondary_intent} based on linguistic patterns in the query about {main_topic}",
"confidence": intent_result.get('confidence_scores', {}).get(secondary_intent, 0.3),
"rejected_reason": f"Primary intent '{primary_intent}' has higher confidence for {main_topic} topic"
})
# Add method-based alternatives based on content
if 'curriculum' in user_input.lower() or 'course' in user_input.lower():
alternative_paths.append({
"path": "Structured educational framework approach",
"reasoning": f"Could provide a more structured educational framework for {main_topic}",
"confidence": 0.6,
"rejected_reason": f"Current approach better matches user's specific request for {main_topic}"
})
if 'detailed' in user_input.lower() or 'comprehensive' in user_input.lower():
alternative_paths.append({
"path": "High-level overview approach",
"reasoning": f"Could provide a high-level overview instead of detailed content for {main_topic}",
"confidence": 0.4,
"rejected_reason": f"User specifically requested detailed information about {main_topic}"
})
return alternative_paths
def _identify_uncertainty_areas(self, intent_result: dict, final_response: dict, safety_checked: dict) -> list:
"""Identify areas of uncertainty in the reasoning based on actual content"""
uncertainty_areas = []
# Intent uncertainty
primary_intent = intent_result.get('primary_intent', 'unknown')
confidence = intent_result.get('confidence_scores', {}).get(primary_intent, 0.5)
if confidence < 0.8:
uncertainty_areas.append({
"aspect": f"Intent classification ({primary_intent}) for user's specific request",
"confidence": confidence,
"mitigation": "Provided multiple interpretation options and context-aware analysis"
})
# Response quality uncertainty
coherence_score = final_response.get('coherence_score', 0.7)
if coherence_score < 0.8:
uncertainty_areas.append({
"aspect": "Response coherence and structure for the specific topic",
"confidence": coherence_score,
"mitigation": "Applied quality enhancement techniques and content relevance checks"
})
# Safety uncertainty
safety_score = safety_checked.get('safety_analysis', {}).get('overall_safety_score', 0.8)
if safety_score < 0.9:
uncertainty_areas.append({
"aspect": "Content safety and bias assessment for educational content",
"confidence": safety_score,
"mitigation": "Generated advisory warnings for user awareness and content appropriateness"
})
# Content relevance uncertainty
response_text = str(final_response.get('final_response', ''))
if len(response_text) < 100: # Very short response
uncertainty_areas.append({
"aspect": "Response completeness for user's detailed request",
"confidence": 0.6,
"mitigation": "Enhanced response generation with topic-specific content"
})
return uncertainty_areas
def _extract_evidence_sources(self, intent_result: dict, final_response: dict, context: dict) -> list:
"""Extract evidence sources for reasoning based on actual content"""
evidence_sources = []
# Intent evidence
evidence_sources.append({
"type": "linguistic_analysis",
"source": "Pattern matching and NLP analysis",
"relevance": 0.9,
"description": f"Intent classification based on linguistic patterns for '{intent_result.get('primary_intent', 'unknown')}' intent"
})
# Context evidence
interactions = context.get('interactions', [])
if interactions:
evidence_sources.append({
"type": "conversation_history",
"source": f"Previous {len(interactions)} interactions",
"relevance": 0.7,
"description": f"Conversation context and topic continuity analysis"
})
# Synthesis evidence
synthesis_method = final_response.get('synthesis_method', 'unknown')
evidence_sources.append({
"type": "synthesis_method",
"source": f"{synthesis_method} approach",
"relevance": 0.8,
"description": f"Response generated using {synthesis_method} methodology with quality optimization"
})
# Content-specific evidence
response_text = str(final_response.get('final_response', ''))
if len(response_text) > 1000:
evidence_sources.append({
"type": "content_analysis",
"source": "Comprehensive content generation",
"relevance": 0.85,
"description": "Detailed response generation based on user's specific requirements"
})
return evidence_sources
def _calibrate_confidence_scores(self, reasoning_chain: dict) -> dict:
"""Calibrate confidence scores across the reasoning chain"""
chain_of_thought = reasoning_chain.get('chain_of_thought', {})
# Calculate overall confidence
step_confidences = []
for step_data in chain_of_thought.values():
if isinstance(step_data, dict) and 'confidence' in step_data:
step_confidences.append(step_data['confidence'])
overall_confidence = sum(step_confidences) / len(step_confidences) if step_confidences else 0.7
return {
"overall_confidence": overall_confidence,
"step_count": len(chain_of_thought),
"confidence_distribution": {
"high_confidence": len([c for c in step_confidences if c > 0.8]),
"medium_confidence": len([c for c in step_confidences if 0.6 <= c <= 0.8]),
"low_confidence": len([c for c in step_confidences if c < 0.6])
},
"calibration_method": "Weighted average of step confidences"
}
async def _extract_main_topic(self, user_input: str, context: dict = None) -> str:
"""Extract the main topic using LLM zero-shot classification with caching"""
try:
# Check cache first
import hashlib
cache_key = hashlib.md5(user_input.encode()).hexdigest()
if cache_key in self._topic_cache:
logger.debug(f"Topic cache hit for: {user_input[:50]}...")
return self._topic_cache[cache_key]
# Use LLM for accurate topic extraction
if self.llm_router:
# Build context summary if available
context_info = ""
if context:
session_context = context.get('session_context', {})
session_summary = session_context.get('summary', '') if isinstance(session_context, dict) else ""
interaction_count = len(context.get('interaction_contexts', []))
if session_summary:
context_info = f"\n\nSession context: {session_summary[:200]}"
if interaction_count > 0:
context_info += f"\nPrevious interactions in session: {interaction_count}"
prompt = f"""Classify the main topic of this query in 2-5 words. Be specific and concise.
Query: "{user_input}"{context_info}
Respond with ONLY the topic name (e.g., "Machine Learning", "Healthcare Analytics", "Financial Modeling", "Software Development", "Educational Curriculum").
Do not include explanations, just the topic name. Maximum 5 words."""
topic_result = await self.llm_router.route_inference(
task_type="classification",
prompt=prompt,
max_tokens=20,
temperature=0.3 # Lower temperature for consistency
)
if topic_result and isinstance(topic_result, str) and topic_result.strip():
topic = topic_result.strip()
# Clean up any extra text (LLM might add explanations)
# Take first line and first 5 words max
topic = topic.split('\n')[0].strip()
words = topic.split()[:5]
topic = " ".join(words)
# Cache the result
if len(self._topic_cache) >= self._topic_cache_max_size:
# Remove oldest entry (simple FIFO)
oldest_key = next(iter(self._topic_cache))
del self._topic_cache[oldest_key]
self._topic_cache[cache_key] = topic
logger.debug(f"Topic extracted: {topic}")
return topic
# Fallback to simple extraction if LLM unavailable
words = user_input.split()[:4]
fallback_topic = " ".join(words) if words else "General inquiry"
logger.warning(f"Using fallback topic extraction: {fallback_topic}")
return fallback_topic
except Exception as e:
logger.error(f"Error in LLM-based topic extraction: {e}", exc_info=True)
# Fallback
words = user_input.split()[:4]
return " ".join(words) if words else "General inquiry"
async def _extract_keywords(self, user_input: str) -> str:
"""Extract key terms using LLM or simple extraction"""
try:
# Simple extraction for performance (keywords less critical than topic)
# Can be enhanced with LLM if needed
import re
# Extract meaningful words (3+ characters, not common stop words)
stop_words = {'the', 'and', 'for', 'are', 'but', 'not', 'you', 'all', 'can', 'her', 'was', 'one', 'our', 'out', 'day', 'get', 'has', 'him', 'his', 'how', 'its', 'may', 'new', 'now', 'old', 'see', 'two', 'way', 'who', 'boy', 'did', 'she', 'use', 'her', 'many', 'some', 'time', 'very', 'when', 'come', 'here', 'just', 'like', 'long', 'make', 'over', 'such', 'take', 'than', 'them', 'well', 'were'}
words = re.findall(r'\b[a-zA-Z]{3,}\b', user_input.lower())
keywords = [w for w in words if w not in stop_words][:5]
return ", ".join(keywords) if keywords else "General terms"
except Exception as e:
logger.error(f"Error in keyword extraction: {e}", exc_info=True)
return "General terms"
def _assess_query_complexity(self, user_input: str) -> str:
"""Assess the complexity of the user query"""
word_count = len(user_input.split())
question_count = user_input.count('?')
if word_count > 50 and question_count > 2:
return "Highly complex multi-part query"
elif word_count > 30 and question_count > 1:
return "Moderately complex query"
elif word_count > 15:
return "Standard complexity query"
else:
return "Simple query"
def _determine_response_scope(self, user_input: str) -> str:
"""Determine the scope of response needed"""
input_lower = user_input.lower()
if any(word in input_lower for word in ['detailed', 'comprehensive', 'complete', 'full']):
return "Comprehensive detailed response"
elif any(word in input_lower for word in ['brief', 'short', 'summary', 'overview']):
return "Brief summary response"
elif any(word in input_lower for word in ['step by step', 'tutorial', 'guide', 'how to']):
return "Step-by-step instructional response"
else:
return "Standard informative response"
def _assess_content_relevance(self, user_input: str, final_response: dict) -> str:
"""Assess how relevant the response content is to the user input"""
response_text = str(final_response.get('final_response', ''))
# Simple relevance check based on keyword overlap
input_words = set(user_input.lower().split())
response_words = set(response_text.lower().split())
overlap = len(input_words.intersection(response_words))
total_input_words = len(input_words)
if overlap / total_input_words > 0.3:
return "High relevance to user query"
elif overlap / total_input_words > 0.15:
return "Moderate relevance to user query"
else:
return "Low relevance to user query"
def _assess_content_appropriateness(self, user_input: str, safety_checked: dict) -> str:
"""Assess content appropriateness for the topic"""
warnings = safety_checked.get('warnings', [])
safety_score = safety_checked.get('safety_analysis', {}).get('overall_safety_score', 0.8)
if safety_score > 0.9 and len(warnings) == 0:
return "Highly appropriate content"
elif safety_score > 0.8 and len(warnings) <= 1:
return "Appropriate content with minor notes"
else:
return "Content requires review"
def check_safety_thresholds(self, safety_result: dict) -> tuple:
"""Check if safety scores exceed thresholds"""
safety_analysis = safety_result.get('safety_analysis', {})
# Try to get safety_scores first (LLM format), fallback to confidence_scores (pattern format)
safety_scores = safety_analysis.get('safety_scores', {})
if not safety_scores:
# Map confidence_scores to safety_scores format
confidence_scores = safety_analysis.get('confidence_scores', {})
safety_scores = {
"toxicity_or_harmful_language": confidence_scores.get('toxicity', 0.0),
"potential_biases_or_stereotypes": confidence_scores.get('bias', 0.0),
"privacy_or_security_concerns": confidence_scores.get('privacy', 0.0),
"controversial_or_sensitive_topics": 1.0 - confidence_scores.get('safety', 1.0)
}
exceeded_categories = []
for category, score in safety_scores.items():
threshold = self.safety_thresholds.get(category, 1.0)
if isinstance(score, (int, float)) and score > threshold:
exceeded_categories.append(category)
logger.info(f"Safety threshold exceeded: {category} = {score} > {threshold}")
return len(exceeded_categories) > 0, exceeded_categories
def generate_revision_prompt(self, original_response: str, exceeded_categories: list,
safety_warnings: list) -> str:
"""Generate revision prompt for synthesis agent"""
category_instructions = {
"toxicity_or_harmful_language": "Remove any language that could be harmful or offensive",
"potential_biases_or_stereotypes": "Ensure response provides balanced alternatives and avoids stereotypes. Include diverse perspectives and specific qualifications needed for each career path",
"privacy_or_security_concerns": "Remove any content that could compromise privacy or security",
"controversial_or_sensitive_topics": "Present balanced viewpoints and acknowledge different perspectives"
}
revision_instructions = []
for category in exceeded_categories:
if category in category_instructions:
revision_instructions.append(category_instructions[category])
prompt = f"""REVISION REQUIRED: The following response has safety concerns that need addressing.
Original Response:
{original_response}
Safety Issues Detected:
{', '.join(exceeded_categories)}
Specific Warnings:
{'; '.join(safety_warnings) if safety_warnings else 'General safety concerns detected'}
REVISION INSTRUCTIONS:
{' | '.join(revision_instructions)}
Please revise the response to address these concerns while maintaining helpfulness and accuracy. Ensure the response:
1. Addresses the user's original question completely
2. Provides specific, actionable alternatives with clear qualifications needed
3. Avoids generalizations and stereotypes about career transitions
4. Includes necessary skills, education, and experience requirements
5. Maintains a balanced, inclusive perspective that acknowledges different paths
Revised Response:"""
return prompt
async def process_request_with_revision(self, session_id: str, user_input: str) -> dict:
"""Enhanced process_request with safety revision loop and timeout protection"""
try:
return await asyncio.wait_for(
self._process_request_with_revision_internal(session_id, user_input),
timeout=self.revision_timeout
)
except asyncio.TimeoutError:
logger.error(f"Safety revision timed out after {self.revision_timeout}s")
# Fallback to basic response
return {
'final_response': 'Request processing took longer than expected. Please try again.',
'response': 'Request processing took longer than expected. Please try again.',
'revision_attempts': 0,
'timeout_error': True,
'safety_revision_applied': False
}
async def _process_request_with_revision_internal(self, session_id: str, user_input: str) -> dict:
"""Internal revision loop with comprehensive error handling"""
revision_attempt = 0
current_response = None
final_result = None
exceeded_categories = [] # ✅ Fix: Initialize variables
safety_warnings = [] # ✅ Fix: Initialize variables
while revision_attempt <= self.max_revision_attempts:
try:
# For revision attempts, modify the input to include revision instructions
processing_input = user_input
if revision_attempt > 0:
processing_input = self.generate_revision_prompt(
current_response,
exceeded_categories,
safety_warnings
)
logger.info(f"Revision attempt {revision_attempt}: regenerating response with safety improvements")
# Execute normal processing flow
result = await self.process_request(session_id, processing_input)
# Extract the response text
current_response = result.get('final_response') or result.get('response', '')
if not current_response:
# Fallback: try to extract from metadata
metadata = result.get('metadata', {})
current_response = metadata.get('synthesis_result', {}).get('final_response', '')
if not current_response:
logger.warning("Could not extract response text for safety check")
return result
# Execute safety check on the response
safety_checked = await self.agents['safety_check'].execute(
response=current_response,
context=result.get('context', {})
)
# Check if revision is needed
needs_revision, exceeded_categories = self.check_safety_thresholds(safety_checked)
safety_warnings = safety_checked.get('warnings', [])
if not needs_revision:
# Safety thresholds met
logger.info(f"Safety check passed on attempt {revision_attempt + 1}")
result['safety_result'] = safety_checked
result['revision_attempts'] = revision_attempt
result['safety_revision_applied'] = revision_attempt > 0
# Update metadata with safety info
if 'metadata' not in result:
result['metadata'] = {}
result['metadata']['safety_result'] = safety_checked
result['metadata']['revision_attempts'] = revision_attempt
return result
if revision_attempt >= self.max_revision_attempts:
# Max attempts reached - handle gracefully based on input complexity
logger.warning(f"Max revision attempts reached. Categories still exceeded: {exceeded_categories}")
input_complexity = self._assess_input_complexity(user_input)
# For complex inputs, offer intelligent re-attempt instead of asking user to rephrase
if input_complexity["is_complex"] and input_complexity["complexity_score"] > 25:
logger.info("Complex input detected - attempting intelligent re-prompt")
try:
# Generate improved prompt automatically
improved_prompt = self._generate_improved_prompt(user_input, exceeded_categories)
# One final attempt with improved prompting
improved_result = await self.process_request(session_id, improved_prompt)
improved_response = improved_result.get('final_response', '')
# Quick safety check on improved response
final_safety_check = await self.agents['safety_check'].execute(
response=improved_response,
context=improved_result.get('context', {})
)
improved_needs_revision, improved_exceeded = self.check_safety_thresholds(final_safety_check)
if not improved_needs_revision:
# Success with intelligent re-prompting
logger.info("Intelligent re-prompt resolved safety concerns")
improved_result['safety_result'] = final_safety_check
improved_result['revision_attempts'] = revision_attempt + 1
improved_result['intelligent_reprompt_success'] = True
if 'metadata' not in improved_result:
improved_result['metadata'] = {}
improved_result['metadata']['safety_result'] = final_safety_check
improved_result['metadata']['revision_attempts'] = revision_attempt + 1
improved_result['metadata']['intelligent_reprompt_success'] = True
return improved_result
else:
# Still has issues - proceed with guidance
logger.info("Intelligent re-prompt did not fully resolve concerns")
current_response = improved_response
safety_checked = final_safety_check
exceeded_categories = improved_exceeded
except Exception as e:
logger.warning(f"Intelligent re-prompt failed: {e}", exc_info=True)
# Continue with original response and guidance
# Add user-friendly warning summary with appropriate guidance
warning_summary = self._generate_warning_summary(exceeded_categories, safety_checked.get('warnings', []))
user_guidance = self._generate_user_guidance(exceeded_categories, user_input)
# Append guidance to response
original_response = result.get('final_response', '')
enhanced_response = f"{original_response}\n\n{warning_summary}\n\n{user_guidance}"
result['final_response'] = enhanced_response
result['response'] = enhanced_response # Also update response for compatibility
result['safety_result'] = safety_checked
result['revision_attempts'] = revision_attempt
result['safety_exceeded'] = exceeded_categories
result['safety_revision_applied'] = revision_attempt > 0
result['warning_summary_added'] = True
result['input_complexity'] = input_complexity
# Update metadata
if 'metadata' not in result:
result['metadata'] = {}
result['metadata']['safety_result'] = safety_checked
result['metadata']['revision_attempts'] = revision_attempt
result['metadata']['safety_exceeded'] = exceeded_categories
result['metadata']['input_complexity'] = input_complexity
return result
# Store for next revision
final_result = result
revision_attempt += 1
logger.info(f"Generating revision attempt {revision_attempt} for: {exceeded_categories}")
except Exception as e:
logger.error(f"Error in safety revision attempt {revision_attempt}: {e}", exc_info=True)
if final_result:
final_result['revision_error'] = str(e)
if 'metadata' not in final_result:
final_result['metadata'] = {}
final_result['metadata']['revision_error'] = str(e)
return final_result
# If we don't have a result yet, return the error result
return {
'response': 'Error in processing with safety revision',
'final_response': 'Error in processing with safety revision',
'revision_attempts': revision_attempt,
'revision_error': str(e),
'error': str(e)
}
# Fallback - should not reach here
return final_result or {
'response': 'Error in safety revision processing',
'final_response': 'Error in safety revision processing',
'revision_attempts': revision_attempt,
'safety_revision_applied': False
}
def _generate_warning_summary(self, exceeded_categories: list, safety_warnings: list) -> str:
"""Generate user-friendly warning summary"""
category_explanations = {
"potential_biases_or_stereotypes": "may contain assumptions about career transitions that don't account for individual circumstances",
"toxicity_or_harmful_language": "contains language that could be harmful or inappropriate",
"privacy_or_security_concerns": "includes content that could raise privacy or security considerations",
"controversial_or_sensitive_topics": "touches on topics that may benefit from additional perspective"
}
if not exceeded_categories:
return ""
warning_text = "**Note**: This response " + ", ".join([
category_explanations.get(cat, f"has concerns related to {cat}")
for cat in exceeded_categories
]) + "."
return warning_text
def _generate_user_guidance(self, exceeded_categories: list, original_user_input: str) -> str:
"""Generate proactive user guidance with UX-friendly options for complex prompts"""
if not exceeded_categories:
return ""
input_complexity = self._assess_input_complexity(original_user_input)
guidance_templates = {
"potential_biases_or_stereotypes": {
"issue": "avoid assumptions about career paths",
"simple_suggestion": "ask for advice tailored to specific qualifications or industry interests",
"complex_refinement": "add details like your specific skills, target industry, or education level"
},
"toxicity_or_harmful_language": {
"issue": "ensure respectful communication",
"simple_suggestion": "rephrase using more neutral language",
"complex_refinement": "adjust the tone while keeping your detailed context"
},
"privacy_or_security_concerns": {
"issue": "protect sensitive information",
"simple_suggestion": "ask for general guidance instead",
"complex_refinement": "remove specific personal details while keeping the scenario structure"
},
"controversial_or_sensitive_topics": {
"issue": "get balanced perspectives",
"simple_suggestion": "ask for multiple viewpoints or balanced analysis",
"complex_refinement": "specify you'd like pros/cons or different perspectives included"
}
}
primary_category = exceeded_categories[0]
guidance = guidance_templates.get(primary_category, {
"issue": "improve response quality",
"simple_suggestion": "try rephrasing with more specific details",
"complex_refinement": "add clarifying details to your existing question"
})
# Topic extraction removed from error recovery to avoid async complexity
# Error recovery uses simplified context
topic = "Error recovery context"
# Adaptive guidance based on input complexity
if input_complexity["is_complex"]:
return f"""**Want a better response?** To {guidance['issue']} in responses about {topic}, you could {guidance['complex_refinement']} rather than rewriting your detailed question. Or simply ask again as-is and I'll focus on providing more balanced information."""
else:
return f"""**Want a better response?** To {guidance['issue']} in future responses about {topic}, you could {guidance['simple_suggestion']}. Feel free to ask again with any adjustments!"""
def _assess_input_complexity(self, user_input: str) -> dict:
"""Assess input complexity to determine appropriate UX guidance"""
word_count = len(user_input.split())
sentence_count = user_input.count('.') + user_input.count('!') + user_input.count('?')
has_context = any(phrase in user_input.lower() for phrase in [
'i am currently', 'my situation', 'my background', 'i have been',
'my experience', 'i work', 'my company', 'specific to my'
])
has_constraints = any(phrase in user_input.lower() for phrase in [
'must', 'need to', 'required', 'limited by', 'constraint', 'budget',
'timeline', 'deadline', 'specific requirements'
])
is_complex = (
word_count > 30 or
sentence_count > 2 or
has_context or
has_constraints
)
return {
"is_complex": is_complex,
"word_count": word_count,
"has_personal_context": has_context,
"has_constraints": has_constraints,
"complexity_score": word_count * 0.1 + sentence_count * 5 + (has_context * 10) + (has_constraints * 10)
}
def _generate_improved_prompt(self, original_input: str, exceeded_categories: list) -> str:
"""Generate improved prompt for complex inputs to resolve safety concerns automatically"""
improvements = []
if "potential_biases_or_stereotypes" in exceeded_categories:
improvements.append("Please provide specific qualifications, skills, and requirements for each option")
improvements.append("Include diverse pathways and acknowledge individual circumstances vary")
if "toxicity_or_harmful_language" in exceeded_categories:
improvements.append("Use respectful, professional language throughout")
if "privacy_or_security_concerns" in exceeded_categories:
improvements.append("Focus on general guidance without personal specifics")
if "controversial_or_sensitive_topics" in exceeded_categories:
improvements.append("Present balanced perspectives and multiple viewpoints")
improvement_instructions = ". ".join(improvements)
improved_prompt = f"""{original_input}
Additional guidance for response: {improvement_instructions}. Ensure all advice is specific, actionable, and acknowledges different backgrounds and circumstances."""
return improved_prompt
def check_query_similarity(self, new_query: str, threshold: float = 0.85) -> Optional[Dict]:
"""
Step 3: Add Query Similarity Detection
Check if new query is similar to any recent queries above threshold.
Uses simple string similarity (can be enhanced with embeddings later).
Args:
new_query: The new query to check
threshold: Similarity threshold (default 0.85)
Returns:
Cached response dict if similar query found, None otherwise
"""
if not self.recent_queries:
return None
new_query_lower = new_query.lower().strip()
for cached_query_data in reversed(self.recent_queries): # Check most recent first
cached_query = cached_query_data.get('query', '')
if not cached_query:
continue
cached_query_lower = cached_query.lower().strip()
# Calculate similarity using simple word overlap (Jaccard similarity)
similarity = self._calculate_similarity(new_query_lower, cached_query_lower)
if similarity > threshold:
logger.info(f"Similar query detected (similarity: {similarity:.2f}): '{new_query[:50]}...' similar to '{cached_query[:50]}...'")
return cached_query_data.get('response')
return None
def _calculate_similarity(self, query1: str, query2: str) -> float:
"""
Calculate similarity between two queries using Jaccard similarity on words.
Can be enhanced with embeddings for semantic similarity.
"""
if not query1 or not query2:
return 0.0
# Split into words and create sets
words1 = set(query1.split())
words2 = set(query2.split())
if not words1 or not words2:
return 0.0
# Calculate Jaccard similarity
intersection = len(words1.intersection(words2))
union = len(words1.union(words2))
if union == 0:
return 0.0
jaccard = intersection / union
# Also check for substring similarity for very similar queries
if query1 in query2 or query2 in query1:
jaccard = max(jaccard, 0.9)
return jaccard
def track_response_metrics(self, start_time: float, response: Dict):
"""
Step 5: Add Response Metrics Tracking
Track performance metrics for responses.
Args:
start_time: Start time from time.time()
response: Response dictionary containing response data
"""
try:
latency = time.time() - start_time
# Extract response text for token counting
response_text = (
response.get('response') or
response.get('final_response') or
str(response.get('result', ''))
)
# Approximate token count (4 characters ≈ 1 token)
token_count = len(response_text.split()) if response_text else 0
# Extract safety score
safety_score = 0.8 # Default
if 'metadata' in response:
synthesis_result = response['metadata'].get('synthesis_result', {})
safety_result = response['metadata'].get('safety_result', {})
if safety_result:
safety_analysis = safety_result.get('safety_analysis', {})
safety_score = safety_analysis.get('overall_safety_score', 0.8)
metrics = {
'latency': latency,
'token_count': token_count,
'agent_calls': self.agent_call_count,
'safety_score': safety_score,
'timestamp': datetime.now().isoformat()
}
# Store in history (keep last 100)
self.response_metrics_history.append(metrics)
if len(self.response_metrics_history) > 100:
self.response_metrics_history = self.response_metrics_history[-100:]
# Log metrics
logger.info(f"Response Metrics - Latency: {latency:.3f}s, Tokens: {token_count}, "
f"Agent Calls: {self.agent_call_count}, Safety Score: {safety_score:.2f}")
# Reset agent call count for next request
self.agent_call_count = 0
except Exception as e:
logger.error(f"Error tracking response metrics: {e}", exc_info=True)