# orchestrator_engine.py import uuid from datetime import datetime class MVPOrchestrator: def __init__(self, llm_router, context_manager, agents): self.llm_router = llm_router self.context_manager = context_manager self.agents = agents self.execution_trace = [] async def process_request(self, session_id: str, user_input: str) -> dict: """ Main orchestration flow with academic differentiation """ # Step 1: Generate unique interaction ID interaction_id = self._generate_interaction_id(session_id) # Step 2: Context management context = await self.context_manager.manage_context(session_id, user_input) # Step 3: Intent recognition with CoT intent_result = await self.agents['intent_recognition'].execute( user_input=user_input, context=context ) # Step 4: Agent execution planning execution_plan = await self._create_execution_plan(intent_result, context) # Step 5: Parallel agent execution agent_results = await self._execute_agents(execution_plan, user_input, context) # Step 6: Response synthesis final_response = await self.agents['response_synthesis'].execute( agent_outputs=agent_results, user_input=user_input, context=context ) # Step 7: Safety and bias check safety_checked = await self.agents['safety_check'].execute( response=final_response, context=context ) return self._format_final_output(safety_checked, interaction_id) def _generate_interaction_id(self, session_id: str) -> str: """ Generate unique interaction identifier """ timestamp = datetime.now().isoformat() unique_id = str(uuid.uuid4())[:8] return f"{session_id}_{unique_id}_{int(datetime.now().timestamp())}" async def _create_execution_plan(self, intent_result: dict, context: dict) -> dict: """ Create execution plan based on intent recognition """ # TODO: Implement agent selection and sequencing logic return { "agents_to_execute": [], "execution_order": "parallel", "priority": "normal" } async def _execute_agents(self, execution_plan: dict, user_input: str, context: dict) -> dict: """ Execute agents in parallel or sequential order based on plan """ # TODO: Implement parallel/sequential agent execution return {} def _format_final_output(self, response: dict, interaction_id: str) -> dict: """ Format final output with tracing and metadata """ return { "interaction_id": interaction_id, "response": response.get("final_response", ""), "confidence_score": response.get("confidence_score", 0.0), "agent_trace": self.execution_trace, "timestamp": datetime.now().isoformat(), "metadata": { "agents_used": response.get("agents_used", []), "processing_time": response.get("processing_time", 0), "token_count": response.get("token_count", 0) } } def get_execution_trace(self) -> list: """ Return execution trace for debugging and analysis """ return self.execution_trace def clear_execution_trace(self): """ Clear the execution trace """ self.execution_trace = []