# Context Structure Fix Implementation ## Summary Fixed context structure mismatches across all agents to properly use the Context Manager's actual data structure. All agents now correctly access `interaction_contexts`, `user_context`, and `combined_context` instead of non-existent keys like `conversation_history` or `interactions`. ## Changes Made ### 1. Intent Recognition Agent (`src/agents/intent_agent.py`) **Problem**: Was accessing `context.get('conversation_history', [])` which doesn't exist. **Fix**: - Now uses `combined_context` (preferred) or builds from `interaction_contexts` and `user_context` - Shows last 2 interaction summaries for context awareness - Includes user context if available - Provides informative message when no context is available **Key Changes**: ```python # OLD (line 109): Available Context: {context.get('conversation_history', [])[-2:] if context else []} # NEW: # Uses combined_context if available, otherwise builds from interaction_contexts combined_context = context.get('combined_context', '') interaction_contexts = context.get('interaction_contexts', []) user_context = context.get('user_context', '') ``` **Impact**: Intent agent now sees actual conversation history, improving intent recognition accuracy for follow-up questions. --- ### 2. Response Synthesis Agent (`src/agents/synthesis_agent.py`) **Problem**: Was accessing `context.get('interactions', [])` which doesn't exist. **Fix**: - `_build_context_section()` now uses `combined_context` (preferred) or builds from `interaction_contexts` - Updated `_summarize_interaction_contexts()` to work with Context Manager structure - Added backward compatibility via `_summarize_interactions()` wrapper - Updated logging and metadata to use correct keys **Key Changes**: ```python # OLD (line 534): interactions = context.get('interactions', []) # NEW: combined_context = context.get('combined_context', '') interaction_contexts = context.get('interaction_contexts', []) user_context = context.get('user_context', '') ``` **Impact**: Synthesis agent now uses actual conversation context for generating contextually relevant responses. --- ### 3. Safety Check Agent (`src/agents/safety_agent.py`) **Problem**: Wasn't using context at all in safety analysis. **Fix**: - Enhanced `_build_safety_prompt()` to include context information - Uses `user_context` and recent `interaction_contexts` for context-aware safety analysis - Helps safety agent understand conversational context when assessing content appropriateness **Key Changes**: ```python # Added context awareness: user_context = context.get('user_context', '') interaction_contexts = context.get('interaction_contexts', []) # Includes context in safety analysis prompt ``` **Impact**: Safety analysis now considers conversation context, improving appropriateness assessment. --- ### 4. Skills Identification Agent (`src/agents/skills_identification_agent.py`) **Problem**: Wasn't using context in skill identification. **Fix**: - Enhanced `_build_market_analysis_prompt()` to accept and use context parameter - Includes user context and recent interaction contexts in market analysis - Helps identify skills based on conversation continuity **Key Changes**: ```python # Updated method signature: def _build_market_analysis_prompt(self, user_input: str, context: Dict[str, Any] = None) # Added context information: user_context = context.get('user_context', '') interaction_contexts = context.get('interaction_contexts', []) ``` **Impact**: Skills identification now considers conversation history for better skill relevance. --- ## Context Structure Reference All agents now correctly use the Context Manager's structure: ```python context = { "session_id": str, "user_id": str, "user_context": str, # 500-token user persona summary "interaction_contexts": [ # List of interaction summary dicts { "summary": str, # 50-token interaction summary "timestamp": str }, ... ], "combined_context": str, # Pre-formatted: "[User Context]\n...\n[Interaction Context #N]\n..." "preferences": dict, "active_tasks": list, "last_activity": str } ``` ## Implementation Strategy ### Priority Order 1. **Use `combined_context` first** - Pre-formatted by Context Manager, most efficient 2. **Fallback to building from components** - If `combined_context` not available 3. **Handle empty context gracefully** - Informative messages when no context exists ### Context Access Pattern ```python # Preferred pattern used across all agents: if context: # Option 1: Use pre-formatted combined_context combined_context = context.get('combined_context', '') if combined_context: # Use combined_context directly context_info = combined_context # Option 2: Build from components else: user_context = context.get('user_context', '') interaction_contexts = context.get('interaction_contexts', []) # Build context_info from components ``` ## Testing Recommendations ### Test Scenarios 1. **First Turn (No Context)** - Verify agents handle empty context gracefully - Verify informative messages when no context available 2. **Second Turn (1 Interaction)** - Verify agents access `interaction_contexts[0]` - Verify context appears in prompts 3. **Multiple Turns (3+ Interactions)** - Verify agents use last N interaction contexts - Verify context accumulates correctly 4. **With User Persona (20+ Interactions)** - Verify `user_context` appears in prompts - Verify `combined_context` includes user context ### Expected Behavior | Turn | Intent Agent Sees | Synthesis Agent Sees | Safety Agent Sees | Skills Agent Sees | |------|------------------|---------------------|-------------------|-------------------| | 1 | "No previous context" | Empty | No context | No context | | 2 | Interaction #1 summary | Interaction #1 | Recent context | Recent context | | 3+ | Last 2 interactions | All/Summarized interactions | Recent context | Recent context | | 20+ | User context + interactions | User context + interactions | User context | User context | ## Benefits 1. **Intent Recognition**: Now context-aware, better accuracy for follow-up questions 2. **Response Synthesis**: Uses conversation history for more relevant responses 3. **Safety Analysis**: Context-aware appropriateness assessment 4. **Skills Identification**: Considers conversation continuity for better skill matching 5. **Consistency**: All agents use the same context structure 6. **Performance**: Uses pre-formatted `combined_context` when available (more efficient) ## Backward Compatibility - Synthesis agent includes `_summarize_interactions()` wrapper for backward compatibility - All changes are additive (enhancements) rather than breaking changes - Fallback logic handles missing or incomplete context gracefully ## Files Modified 1. `src/agents/intent_agent.py` - Fixed context access in `_build_chain_of_thought_prompt()` 2. `src/agents/synthesis_agent.py` - Fixed `_build_context_section()` and related methods 3. `src/agents/safety_agent.py` - Enhanced `_build_safety_prompt()` with context 4. `src/agents/skills_identification_agent.py` - Enhanced `_build_market_analysis_prompt()` with context ## Verification ✅ No linting errors ✅ All agents use correct context keys ✅ Backward compatibility maintained ✅ Graceful handling of empty context ✅ Consistent implementation pattern across all agents