# local_model_loader.py # Local GPU-based model loading for NVIDIA T4 Medium (24GB vRAM) import logging import torch from typing import Optional, Dict, Any from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel from sentence_transformers import SentenceTransformer logger = logging.getLogger(__name__) class LocalModelLoader: """ Loads and manages models locally on GPU for faster inference. Optimized for NVIDIA T4 Medium with 24GB vRAM. """ def __init__(self, device: Optional[str] = None): """Initialize the model loader with GPU device detection.""" # Detect device if device is None: if torch.cuda.is_available(): self.device = "cuda" self.device_name = torch.cuda.get_device_name(0) logger.info(f"GPU detected: {self.device_name}") logger.info(f"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB") else: self.device = "cpu" self.device_name = "CPU" logger.warning("No GPU detected, using CPU") else: self.device = device self.device_name = device # Model cache self.loaded_models: Dict[str, Any] = {} self.loaded_tokenizers: Dict[str, Any] = {} self.loaded_embedding_models: Dict[str, Any] = {} def load_chat_model(self, model_id: str, load_in_8bit: bool = False, load_in_4bit: bool = False) -> tuple: """ Load a chat model and tokenizer on GPU. Args: model_id: HuggingFace model identifier load_in_8bit: Use 8-bit quantization (saves memory) load_in_4bit: Use 4-bit quantization (saves more memory) Returns: Tuple of (model, tokenizer) """ if model_id in self.loaded_models: logger.info(f"Model {model_id} already loaded, reusing") return self.loaded_models[model_id], self.loaded_tokenizers[model_id] try: logger.info(f"Loading model {model_id} on {self.device}...") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) # Determine quantization config if load_in_4bit and self.device == "cuda": try: from transformers import BitsAndBytesConfig quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) logger.info("Using 4-bit quantization") except ImportError: logger.warning("bitsandbytes not available, loading without quantization") quantization_config = None elif load_in_8bit and self.device == "cuda": try: quantization_config = {"load_in_8bit": True} logger.info("Using 8-bit quantization") except: quantization_config = None else: quantization_config = None # Load model with GPU optimization if self.device == "cuda": model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", # Automatically uses GPU torch_dtype=torch.float16, # Use FP16 for memory efficiency trust_remote_code=True, **(quantization_config if isinstance(quantization_config, dict) else {}), **({"quantization_config": quantization_config} if quantization_config and not isinstance(quantization_config, dict) else {}) ) else: model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float32, trust_remote_code=True ) model = model.to(self.device) # Ensure padding token is set if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Cache models self.loaded_models[model_id] = model self.loaded_tokenizers[model_id] = tokenizer # Log memory usage if self.device == "cuda": allocated = torch.cuda.memory_allocated(0) / 1024**3 reserved = torch.cuda.memory_reserved(0) / 1024**3 logger.info(f"GPU Memory - Allocated: {allocated:.2f} GB, Reserved: {reserved:.2f} GB") logger.info(f"✓ Model {model_id} loaded successfully on {self.device}") return model, tokenizer except Exception as e: logger.error(f"Error loading model {model_id}: {e}", exc_info=True) raise def load_embedding_model(self, model_id: str) -> SentenceTransformer: """ Load a sentence transformer model for embeddings. Args: model_id: HuggingFace model identifier Returns: SentenceTransformer model """ if model_id in self.loaded_embedding_models: logger.info(f"Embedding model {model_id} already loaded, reusing") return self.loaded_embedding_models[model_id] try: logger.info(f"Loading embedding model {model_id}...") # SentenceTransformer automatically handles GPU model = SentenceTransformer( model_id, device=self.device ) # Cache model self.loaded_embedding_models[model_id] = model logger.info(f"✓ Embedding model {model_id} loaded successfully on {self.device}") return model except Exception as e: logger.error(f"Error loading embedding model {model_id}: {e}", exc_info=True) raise def generate_text( self, model_id: str, prompt: str, max_tokens: int = 512, temperature: float = 0.7, **kwargs ) -> str: """ Generate text using a loaded chat model. Args: model_id: Model identifier prompt: Input prompt max_tokens: Maximum tokens to generate temperature: Sampling temperature Returns: Generated text """ if model_id not in self.loaded_models: raise ValueError(f"Model {model_id} not loaded. Call load_chat_model() first.") model = self.loaded_models[model_id] tokenizer = self.loaded_tokenizers[model_id] try: # Tokenize input inputs = tokenizer(prompt, return_tensors="pt").to(self.device) # Generate with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, do_sample=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, **kwargs ) # Decode generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Remove prompt from output if present if generated_text.startswith(prompt): generated_text = generated_text[len(prompt):].strip() return generated_text except Exception as e: logger.error(f"Error generating text: {e}", exc_info=True) raise def generate_chat_completion( self, model_id: str, messages: list, max_tokens: int = 512, temperature: float = 0.7, **kwargs ) -> str: """ Generate chat completion using a loaded model. Args: model_id: Model identifier messages: List of message dicts with 'role' and 'content' max_tokens: Maximum tokens to generate temperature: Sampling temperature Returns: Generated response """ if model_id not in self.loaded_models: raise ValueError(f"Model {model_id} not loaded. Call load_chat_model() first.") model = self.loaded_models[model_id] tokenizer = self.loaded_tokenizers[model_id] try: # Format messages as prompt if hasattr(tokenizer, 'apply_chat_template'): # Use chat template if available prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) else: # Fallback: simple formatting prompt = "\n".join([ f"{msg['role']}: {msg['content']}" for msg in messages ]) + "\nassistant: " # Generate return self.generate_text( model_id=model_id, prompt=prompt, max_tokens=max_tokens, temperature=temperature, **kwargs ) except Exception as e: logger.error(f"Error generating chat completion: {e}", exc_info=True) raise def get_embedding(self, model_id: str, text: str) -> list: """ Get embedding vector for text. Args: model_id: Embedding model identifier text: Input text Returns: Embedding vector """ if model_id not in self.loaded_embedding_models: raise ValueError(f"Embedding model {model_id} not loaded. Call load_embedding_model() first.") model = self.loaded_embedding_models[model_id] try: embedding = model.encode(text, convert_to_numpy=True) return embedding.tolist() except Exception as e: logger.error(f"Error getting embedding: {e}", exc_info=True) raise def clear_cache(self): """Clear all loaded models from memory.""" logger.info("Clearing model cache...") # Clear models for model_id in list(self.loaded_models.keys()): del self.loaded_models[model_id] for model_id in list(self.loaded_tokenizers.keys()): del self.loaded_tokenizers[model_id] for model_id in list(self.loaded_embedding_models.keys()): del self.loaded_embedding_models[model_id] # Clear GPU cache if self.device == "cuda": torch.cuda.empty_cache() logger.info("✓ Model cache cleared") def get_memory_usage(self) -> Dict[str, float]: """Get current GPU memory usage in GB.""" if self.device != "cuda": return {"device": "cpu", "gpu_available": False} return { "device": self.device_name, "gpu_available": True, "allocated_gb": torch.cuda.memory_allocated(0) / 1024**3, "reserved_gb": torch.cuda.memory_reserved(0) / 1024**3, "total_gb": torch.cuda.get_device_properties(0).total_memory / 1024**3 }