Spaces:
Runtime error
Runtime error
update script
Browse files- README.md +5 -5
- app.py +416 -0
- block_latency_demo.json +759 -0
- requirements.txt +6 -0
- samples/mobilenetv3small_0.json +0 -0
- samples/mobilenetv3small_0.onnx +3 -0
- samples/mobilenetv3small_0.pb +3 -0
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title: Latency Prediction
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.0.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Latency Prediction by nn-Meter
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.0.20
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
app.py
ADDED
|
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from nn_meter import load_latency_predictor
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
cortexA76cpu_predictor = load_latency_predictor("cortexA76cpu_tflite21")
|
| 7 |
+
adreno640gpu_predictor = load_latency_predictor("adreno640gpu_tflite21")
|
| 8 |
+
adreno630gpu = load_latency_predictor("adreno630gpu_tflite21")
|
| 9 |
+
myriadvpu_predictor = load_latency_predictor("myriadvpu_openvino2019r2")
|
| 10 |
+
predictor_map = {
|
| 11 |
+
"cortexA76cpu_tflite21": cortexA76cpu_predictor,
|
| 12 |
+
"adreno640gpu_tflite21": adreno640gpu_predictor,
|
| 13 |
+
"adreno630gpu_tflite21": adreno630gpu,
|
| 14 |
+
"myriadvpu_openvino2019r2": myriadvpu_predictor
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
feature_for_kernel = {
|
| 18 |
+
# remove the last two float
|
| 19 |
+
"conv": ["HW", "CIN", "COUT", "KERNEL_SIZE", "STRIDES"],
|
| 20 |
+
"dwconv": ["HW", "CIN", "COUT", "KERNEL_SIZE", "STRIDES"],
|
| 21 |
+
"fc": ["CIN", "COUT"],
|
| 22 |
+
# support up to 4 cin, if less than 4, the latter cin will be set to 0
|
| 23 |
+
"concat": ["HW", "CIN1", "CIN2", "CIN3", "CIN4"],
|
| 24 |
+
#
|
| 25 |
+
"maxpool": ["HW", "CIN", "COUT", "KERNEL_SIZE", "POOL_STRIDES"],
|
| 26 |
+
"avgpool": ["HW", "CIN", "COUT", "KERNEL_SIZE", "POOL_STRIDES"],
|
| 27 |
+
"split": ["HW", "CIN"],
|
| 28 |
+
"channelshuffle": ["HW", "CIN"],
|
| 29 |
+
"se": ["HW", "CIN"],
|
| 30 |
+
"global-avgpool": ["HW", "CIN"],
|
| 31 |
+
"bnrelu": ["HW", "CIN"],
|
| 32 |
+
"bn": ["HW", "CIN"],
|
| 33 |
+
"hswish": ["HW", "CIN"],
|
| 34 |
+
"relu": ["HW", "CIN"],
|
| 35 |
+
"addrelu": ["HW", "CIN1", "CIN2"],
|
| 36 |
+
"add": ["HW", "CIN1", "CIN2"],
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
def get_type(str):
|
| 40 |
+
operate_type = str.split("-")[0]
|
| 41 |
+
if operate_type == 'global' or operate_type == 'gap':
|
| 42 |
+
operate_type = 'global-avgpool'
|
| 43 |
+
return operate_type
|
| 44 |
+
def get_configuration(operate_type, value_arr):
|
| 45 |
+
feature_arr = feature_for_kernel[operate_type]
|
| 46 |
+
if operate_type == 'concat':
|
| 47 |
+
configuration_arr = []
|
| 48 |
+
for i in range(len(feature_arr)):
|
| 49 |
+
if value_arr[i] != 0:
|
| 50 |
+
configuration_arr.append(feature_arr[i]+"="+str(value_arr[i]))
|
| 51 |
+
else:
|
| 52 |
+
break
|
| 53 |
+
else:
|
| 54 |
+
configuration_arr = [feature_arr[i]+"="+str(value_arr[i]) for i in range(min(len(feature_arr),len(value_arr)))]
|
| 55 |
+
return ', '.join(configuration_arr)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def data_process(data):
|
| 59 |
+
new_data = []
|
| 60 |
+
for item in data:
|
| 61 |
+
operate_type = get_type(item[1])
|
| 62 |
+
new_item = {
|
| 63 |
+
"order": item[0],
|
| 64 |
+
"type": operate_type,
|
| 65 |
+
"configuration": get_configuration(operate_type, item[2]),
|
| 66 |
+
"latency": item[3],
|
| 67 |
+
"name": item[4],
|
| 68 |
+
}
|
| 69 |
+
new_data.append(new_item)
|
| 70 |
+
return new_data
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def generate_html(hardware, latency, block_detail):
|
| 74 |
+
data = data_process(block_detail)
|
| 75 |
+
|
| 76 |
+
doc = """<html>
|
| 77 |
+
<head>
|
| 78 |
+
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
|
| 79 |
+
<meta name="viewport" content="width=device-width,
|
| 80 |
+
initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
|
| 81 |
+
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0-beta1/dist/css/bootstrap.min.css" rel="stylesheet">
|
| 82 |
+
<link href="https://unpkg.com/bootstrap-table@1.20.2/dist/bootstrap-table.min.css" rel="stylesheet">
|
| 83 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.8.3/font/bootstrap-icons.css">
|
| 84 |
+
<style>
|
| 85 |
+
html {
|
| 86 |
+
font-family: sans-serif;
|
| 87 |
+
padding: 5px;
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
body {
|
| 91 |
+
padding: 10px;
|
| 92 |
+
font-size: 0.875rem;
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
#dataviz {
|
| 96 |
+
width: 100%;
|
| 97 |
+
height: 300px;
|
| 98 |
+
position: relative;
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
#toolbar {
|
| 102 |
+
margin-top: 10px;
|
| 103 |
+
margin-bottom: 15px;
|
| 104 |
+
display: flex;
|
| 105 |
+
align-items: center;
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
input[type="number"]:focus-visible {
|
| 109 |
+
outline: none;
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
.bootstrap-table .fixed-table-container .fixed-table-body {
|
| 113 |
+
height: auto;
|
| 114 |
+
}
|
| 115 |
+
</style>
|
| 116 |
+
</head>
|
| 117 |
+
|
| 118 |
+
<body>
|
| 119 |
+
<h4 style="font-size: 1.5rem">Latency Analysis <i class="bi bi-question-circle" data-bs-container="body" data-bs-toggle="popover" data-bs-placement="right" style="font-size:1.2rem;"></i></h4>
|
| 120 |
+
<div id="popoverInfo" style="display: none">
|
| 121 |
+
The latency results are empowered by Microsoft nn-Meter. For more technical details, please refer to the paper: <a href="https://dl.acm.org/doi/abs/10.1145/3529706.3529712" target="_blank">nn-METER: Towards Accurate Latency Prediction of DNN Inference on Diverse Edge Devices</a>.
|
| 122 |
+
</div>
|
| 123 |
+
<div id="toolbar">
|
| 124 |
+
<div style="display: flex;align-items: center;">
|
| 125 |
+
<span>Group By: </span>
|
| 126 |
+
<select class="form-select" id="inputGroupBy" style="width: fit-content;margin-left: 5px;">
|
| 127 |
+
<option value="type">Operator Type</option>
|
| 128 |
+
<option value="name">None</option>
|
| 129 |
+
</select>
|
| 130 |
+
</div>
|
| 131 |
+
<div style="margin-left: 45px;margin-top:6px;display: flex;align-items: center;">
|
| 132 |
+
<div><label><input type="radio" name="quantity" value="all" class="quantity" checked> Show all</label></div>
|
| 133 |
+
|
| 134 |
+
<div style="margin-left: 10px;">
|
| 135 |
+
<label><input type="radio" name="quantity" value="top" class="quantity"> Show top</label>
|
| 136 |
+
<input type="number" value="10" min="1" style="width: 50px; border: none;
|
| 137 |
+
border-bottom: 1px #aaa solid;" id="quantityNumber" disabled>
|
| 138 |
+
</div>
|
| 139 |
+
</div>
|
| 140 |
+
</div>
|
| 141 |
+
<div style="display: flex;">
|
| 142 |
+
<div id="dataviz"> </div>
|
| 143 |
+
</div>
|
| 144 |
+
|
| 145 |
+
<table id="table" data-search="true" data-search-align="left" data-pagination="true" data-page-size="30" data-page-list="[10, 20, 30, 50, 100, all]">
|
| 146 |
+
<thead>
|
| 147 |
+
<tr>
|
| 148 |
+
<th data-field="order" data-sortable="true">Excution Order</th>
|
| 149 |
+
<th data-field="type" data-sortable="true">Operator Type</th>
|
| 150 |
+
<th data-field="configuration">Configuration</th>
|
| 151 |
+
<th data-field="latency" data-sortable="true">Latency (ms)</th>
|
| 152 |
+
<th data-field="name" width="20%" data-sortable="true">Detail Operator</th>
|
| 153 |
+
</tr>
|
| 154 |
+
</thead>
|
| 155 |
+
</table>
|
| 156 |
+
<script src="https://cdn.jsdelivr.net/npm/echarts@5.3.3/dist/echarts.min.js" type="text/javascript"></script>
|
| 157 |
+
<script src="https://cdn.jsdelivr.net/npm/jquery/dist/jquery.min.js"></script>
|
| 158 |
+
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0-beta1/dist/js/bootstrap.bundle.min.js"></script>
|
| 159 |
+
<script src="https://unpkg.com/bootstrap-table@1.20.2/dist/bootstrap-table.min.js"></script>
|
| 160 |
+
</body>
|
| 161 |
+
<script>
|
| 162 |
+
""" + f"""let rawData = {str(data).replace("'", '"')};""" + """
|
| 163 |
+
rawData.forEach(item => {
|
| 164 |
+
item.name = item.name.split(";").join("; ");
|
| 165 |
+
item.latency = Number(item.latency) ? Number(item.latency) : item.latency;
|
| 166 |
+
})
|
| 167 |
+
|
| 168 |
+
// table
|
| 169 |
+
let $table = $("#table");
|
| 170 |
+
$(function () {
|
| 171 |
+
$table.bootstrapTable({ data: rawData })
|
| 172 |
+
})
|
| 173 |
+
|
| 174 |
+
// visualization
|
| 175 |
+
const chartDom = document.getElementById("dataviz");
|
| 176 |
+
let myChart = echarts.init(chartDom);
|
| 177 |
+
Array.prototype.groupBy = function (key) {
|
| 178 |
+
return this.reduce(function (rv, x) {
|
| 179 |
+
(rv[x[key]] = rv[x[key]] || []).push(x);
|
| 180 |
+
return rv;
|
| 181 |
+
}, {});
|
| 182 |
+
};
|
| 183 |
+
|
| 184 |
+
function processData(rawData, groupBy, quantity) {
|
| 185 |
+
// transform data
|
| 186 |
+
let seriesData = Object.entries(rawData.groupBy(groupBy)).map(([name, arr]) => {
|
| 187 |
+
const value = arr.reduce((sum, curr) => sum + curr.latency, 0);
|
| 188 |
+
const type = arr[0].type;
|
| 189 |
+
return { name, value, type }
|
| 190 |
+
})
|
| 191 |
+
.sort((a, b) => {
|
| 192 |
+
return b.value - a.value
|
| 193 |
+
});
|
| 194 |
+
if (quantity) {
|
| 195 |
+
seriesData = seriesData.slice(0, quantity);
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
return {
|
| 199 |
+
seriesData,
|
| 200 |
+
legendData: seriesData.filter(d => Number(d.value)).map(d => d.name)
|
| 201 |
+
};
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
function formatNumber(num, fixed = 2){
|
| 205 |
+
if(Number(num.toFixed(fixed)) > 0){
|
| 206 |
+
return num.toFixed(fixed);
|
| 207 |
+
}else{
|
| 208 |
+
return num.toPrecision(1);
|
| 209 |
+
}
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
function render(data, groupBy) {
|
| 213 |
+
const sum = data.seriesData.reduce(function (prev, current) {
|
| 214 |
+
return prev + (Number(current.value) ? Number(current.value) : 0)
|
| 215 |
+
}, 0);
|
| 216 |
+
let option = {
|
| 217 |
+
title: {
|
| 218 |
+
text: """ + f"""`Total latency is {format(latency, '.4f')}(ms)`,
|
| 219 |
+
subtext: `on Hardware {hardware}`,"""+"""
|
| 220 |
+
left: "left",
|
| 221 |
+
textStyle:{
|
| 222 |
+
fontSize: 14
|
| 223 |
+
}
|
| 224 |
+
},
|
| 225 |
+
tooltip: {
|
| 226 |
+
trigger: "item",
|
| 227 |
+
formatter: (params) => groupBy==="name"? `<i>type:</i> ${params.data.type}<br><i>detail:</i> ${params.data.name}<br><b>${formatNumber(params.data.value)}</b><br><b>(${formatNumber(params.data.value / sum * 100)}%)</b>` : `${params.data.name}<br><b>${formatNumber(params.data.value)}</b><br><b>(${formatNumber(params.data.value / sum * 100)}%)</b>`,
|
| 228 |
+
extraCssText: "max-width: 400px; white-space: break-spaces;"
|
| 229 |
+
},
|
| 230 |
+
legend: {
|
| 231 |
+
type: "scroll",
|
| 232 |
+
orient: "vertical",
|
| 233 |
+
right: "10%",
|
| 234 |
+
top: "12%",
|
| 235 |
+
bottom: "12%",
|
| 236 |
+
data: data.legendData,
|
| 237 |
+
formatter: (name) => {
|
| 238 |
+
let arr = name.split(";");
|
| 239 |
+
return arr.length === 1 ? name : (arr[0]+"...");
|
| 240 |
+
},
|
| 241 |
+
tooltip: {
|
| 242 |
+
show: true,
|
| 243 |
+
formatter: (params) => {
|
| 244 |
+
let datum = data.seriesData.find(d => d.name === params.name);
|
| 245 |
+
return groupBy==="name"? `<i>type:</i> ${datum.type}<br><i>detail:</i> ${datum.name}<br><b>${formatNumber(datum.value)}</b><br><b>(${formatNumber(datum.value / sum * 100)}%)</b>` :`${datum.name}<br><b>${formatNumber(datum.value)}</b><br><b>(${formatNumber(datum.value / sum * 100)}%)</b>`
|
| 246 |
+
},
|
| 247 |
+
position: (point, params, dom, rect, { contentSize, viewSize }) => [viewSize[0] * 0.4 - contentSize[0] * 0.5, viewSize[1] * 0.5 - contentSize[1] * 0.5]
|
| 248 |
+
}
|
| 249 |
+
},
|
| 250 |
+
series: [
|
| 251 |
+
{
|
| 252 |
+
type: "pie",
|
| 253 |
+
radius: ["40%", "75%"],
|
| 254 |
+
center: ["40%", "50%"],
|
| 255 |
+
data: data.seriesData,
|
| 256 |
+
emphasis: {
|
| 257 |
+
itemStyle: {
|
| 258 |
+
shadowBlur: 10,
|
| 259 |
+
shadowOffsetX: 0,
|
| 260 |
+
shadowColor: "rgba(0, 0, 0, 0.5)"
|
| 261 |
+
}
|
| 262 |
+
}, label: {
|
| 263 |
+
formatter: "{d}%",
|
| 264 |
+
position: "inside",
|
| 265 |
+
color: "#fff",
|
| 266 |
+
},
|
| 267 |
+
}
|
| 268 |
+
],
|
| 269 |
+
color: ["#4e79a7", "#f28e2c", "#e15759", "#76b7b2", "#59a14f", "#edc949", "#af7aa1", "#ff9da7", "#9c755f", "#bab0ab"]
|
| 270 |
+
};
|
| 271 |
+
myChart.dispose();
|
| 272 |
+
myChart = echarts.init(chartDom);
|
| 273 |
+
myChart.setOption(option);
|
| 274 |
+
myChart.on("selectchanged", function(params){
|
| 275 |
+
const index = params.fromActionPayload.dataIndexInside;
|
| 276 |
+
const text = data.seriesData[index].name;
|
| 277 |
+
$table.bootstrapTable("resetSearch", text);
|
| 278 |
+
});
|
| 279 |
+
|
| 280 |
+
myChart.on("legendselectchanged", function(params) {
|
| 281 |
+
suppressSelection(myChart, params);
|
| 282 |
+
});
|
| 283 |
+
|
| 284 |
+
function suppressSelection(chart, params) {
|
| 285 |
+
chart.setOption({ animation: false });
|
| 286 |
+
|
| 287 |
+
// Re-select what the user unselected
|
| 288 |
+
chart.dispatchAction({
|
| 289 |
+
type: "legendSelect",
|
| 290 |
+
name: params.name
|
| 291 |
+
});
|
| 292 |
+
|
| 293 |
+
chart.setOption({ animation: true });
|
| 294 |
+
}
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
// config
|
| 298 |
+
let groupBy = "type";
|
| 299 |
+
let quantityNumber = 10;
|
| 300 |
+
let showAll = true;
|
| 301 |
+
|
| 302 |
+
render(processData(rawData, groupBy), groupBy);
|
| 303 |
+
|
| 304 |
+
function redraw() {
|
| 305 |
+
render(processData(rawData, groupBy, showAll ? null : quantityNumber), groupBy);
|
| 306 |
+
}
|
| 307 |
+
|
| 308 |
+
// change groupby
|
| 309 |
+
document.getElementById("inputGroupBy")
|
| 310 |
+
.addEventListener("change", function () {
|
| 311 |
+
groupBy = this.value;
|
| 312 |
+
|
| 313 |
+
redraw();
|
| 314 |
+
});
|
| 315 |
+
|
| 316 |
+
// change the model of show
|
| 317 |
+
function changeShowModel() {
|
| 318 |
+
if (this.value === "top") {
|
| 319 |
+
document.getElementById("quantityNumber").disabled = false;
|
| 320 |
+
showAll = false;
|
| 321 |
+
} else {
|
| 322 |
+
document.getElementById("quantityNumber").disabled = true;
|
| 323 |
+
showAll = true;
|
| 324 |
+
}
|
| 325 |
+
redraw();
|
| 326 |
+
}
|
| 327 |
+
let items = Object.values(document.getElementsByClassName("quantity"))
|
| 328 |
+
.forEach(item => item.addEventListener("change", changeShowModel));
|
| 329 |
+
|
| 330 |
+
// change the number of show
|
| 331 |
+
document.getElementById("quantityNumber")
|
| 332 |
+
.addEventListener("change", function () {
|
| 333 |
+
quantityNumber = this.value;
|
| 334 |
+
redraw();
|
| 335 |
+
})
|
| 336 |
+
|
| 337 |
+
// enable popover
|
| 338 |
+
const popoverTriggerList = document.querySelectorAll(`[data-bs-toggle="popover"]`)
|
| 339 |
+
const popoverList = [...popoverTriggerList].map(popoverTriggerEl => new bootstrap.Popover(popoverTriggerEl, {
|
| 340 |
+
html : true,
|
| 341 |
+
content: function() {
|
| 342 |
+
return $("#popoverInfo").html();
|
| 343 |
+
}
|
| 344 |
+
}));
|
| 345 |
+
</script>
|
| 346 |
+
</html>
|
| 347 |
+
"""
|
| 348 |
+
return f"""<iframe style="width: 100%; height: 480px" name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;" sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" allowpaymentrequest="" frameborder="0" srcdoc='{doc}'></iframe>"""
|
| 349 |
+
|
| 350 |
+
def generate_error_html(massage):
|
| 351 |
+
return f"""<div style="color:#842029;background: #f8d7da;padding: 10px;border-radius: 10px; margin-top: 15px;"><b>nn-meter meets an error in latency prediction</b>: {massage}</div>
|
| 352 |
+
<div style="padding: 10px;">If you have any questions about the result, you can open new issues in <a href="https://github.com/microsoft/nn-Meter" target="_blank" style="color:#2563eb">nn-meter Git repository</a>.</div>
|
| 353 |
+
"""
|
| 354 |
+
|
| 355 |
+
def get_latency(model, hardware_name):
|
| 356 |
+
if model == None:
|
| 357 |
+
return generate_error_html("Please upload a model file or select one example below.")
|
| 358 |
+
model = model.name
|
| 359 |
+
|
| 360 |
+
if hardware_name == '':
|
| 361 |
+
return generate_error_html("Please select a device.")
|
| 362 |
+
|
| 363 |
+
predictor = predictor_map[hardware_name]
|
| 364 |
+
if model.endswith("onnx"):
|
| 365 |
+
model_type = "onnx"
|
| 366 |
+
elif model.endswith("pb"):
|
| 367 |
+
model_type = "pb"
|
| 368 |
+
else:
|
| 369 |
+
model_type = "nnmeter-ir"
|
| 370 |
+
|
| 371 |
+
try:
|
| 372 |
+
model_latency, block_detail = predictor.detailed_predict(model, model_type)
|
| 373 |
+
return generate_html(hardware_name, model_latency, block_detail)
|
| 374 |
+
except Exception as e:
|
| 375 |
+
return generate_error_html(repr(e))
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
title = "Interactive demo: nn-Meter (Draft Version)"
|
| 380 |
+
description = "Demo for Microsoft's nn-Meter, a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices. To use it, simply upload a model file, or use one of the example below and click βsubmitβ. Results will show up in a few seconds."
|
| 381 |
+
article = "<p style='text-align: center'><a href='https://dl.acm.org/doi/10.1145/3458864.3467882'>nn-Meter: towards accurate latency prediction of deep-learning model inference on diverse edge devices</a> | <a href='https://github.com/microsoft/nn-Meter'>Github Repo</a></p>"
|
| 382 |
+
examples =[
|
| 383 |
+
["samples/mobilenetv3small_0.pb", "cortexA76cpu_tflite21"],
|
| 384 |
+
["samples/mobilenetv3small_0.onnx", "adreno640gpu_tflite21"],
|
| 385 |
+
["samples/mobilenetv3small_0.json", "adreno630gpu_tflite21"]
|
| 386 |
+
]
|
| 387 |
+
|
| 388 |
+
inputs = [
|
| 389 |
+
gr.inputs.File(label="Model File"),
|
| 390 |
+
gr.inputs.Radio(choices=["cortexA76cpu_tflite21", "adreno640gpu_tflite21", "adreno630gpu_tflite21", "myriadvpu_openvino2019r2"], label="Device"),
|
| 391 |
+
]
|
| 392 |
+
outputs = gr.outputs.HTML()
|
| 393 |
+
|
| 394 |
+
iface = gr.Interface(fn=get_latency,
|
| 395 |
+
inputs=inputs,
|
| 396 |
+
outputs=outputs,
|
| 397 |
+
title=title,
|
| 398 |
+
description=description,
|
| 399 |
+
article=article,
|
| 400 |
+
examples=examples,
|
| 401 |
+
allow_flagging="auto",
|
| 402 |
+
css="""
|
| 403 |
+
div[id="6"] {
|
| 404 |
+
flex-direction: column;
|
| 405 |
+
}
|
| 406 |
+
|
| 407 |
+
div[id="12"] {
|
| 408 |
+
margin-left: 0px !important;
|
| 409 |
+
margin-top: 0.75em !important;
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
div[id="12"] iframe{
|
| 413 |
+
height: 80vh !important;
|
| 414 |
+
}
|
| 415 |
+
""")
|
| 416 |
+
iface.launch()
|
block_latency_demo.json
ADDED
|
@@ -0,0 +1,759 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
[
|
| 3 |
+
"layer1.1.conv-bn#57",
|
| 4 |
+
[
|
| 5 |
+
224,
|
| 6 |
+
3,
|
| 7 |
+
16,
|
| 8 |
+
3,
|
| 9 |
+
2
|
| 10 |
+
],
|
| 11 |
+
0.08969208666666643
|
| 12 |
+
],
|
| 13 |
+
[
|
| 14 |
+
"layer1.1.hswish#58",
|
| 15 |
+
[
|
| 16 |
+
112,
|
| 17 |
+
16
|
| 18 |
+
],
|
| 19 |
+
0.06512388473684201
|
| 20 |
+
],
|
| 21 |
+
[
|
| 22 |
+
"layer2.1.conv-bn-relu#59",
|
| 23 |
+
[
|
| 24 |
+
112,
|
| 25 |
+
16,
|
| 26 |
+
16,
|
| 27 |
+
1,
|
| 28 |
+
1
|
| 29 |
+
],
|
| 30 |
+
0.046539635777777595
|
| 31 |
+
],
|
| 32 |
+
[
|
| 33 |
+
"layer2.2.dwconv-bn-relu#60",
|
| 34 |
+
[
|
| 35 |
+
112,
|
| 36 |
+
16,
|
| 37 |
+
16,
|
| 38 |
+
3,
|
| 39 |
+
1
|
| 40 |
+
],
|
| 41 |
+
0.08458797897222242
|
| 42 |
+
],
|
| 43 |
+
[
|
| 44 |
+
"layer2.3.conv-bn-add#61",
|
| 45 |
+
[
|
| 46 |
+
112,
|
| 47 |
+
16,
|
| 48 |
+
16,
|
| 49 |
+
1,
|
| 50 |
+
1
|
| 51 |
+
],
|
| 52 |
+
0.046539635777777595
|
| 53 |
+
],
|
| 54 |
+
[
|
| 55 |
+
"layer3.1.conv-bn-relu#62",
|
| 56 |
+
[
|
| 57 |
+
112,
|
| 58 |
+
16,
|
| 59 |
+
64,
|
| 60 |
+
1,
|
| 61 |
+
1
|
| 62 |
+
],
|
| 63 |
+
0.2812146724444452
|
| 64 |
+
],
|
| 65 |
+
[
|
| 66 |
+
"layer3.2.dwconv-bn-relu#63",
|
| 67 |
+
[
|
| 68 |
+
112,
|
| 69 |
+
64,
|
| 70 |
+
64,
|
| 71 |
+
3,
|
| 72 |
+
2
|
| 73 |
+
],
|
| 74 |
+
0.1847138329761906
|
| 75 |
+
],
|
| 76 |
+
[
|
| 77 |
+
"layer3.3.conv-bn#64",
|
| 78 |
+
[
|
| 79 |
+
56,
|
| 80 |
+
64,
|
| 81 |
+
24,
|
| 82 |
+
1,
|
| 83 |
+
1
|
| 84 |
+
],
|
| 85 |
+
0.12564988711111114
|
| 86 |
+
],
|
| 87 |
+
[
|
| 88 |
+
"layer4.1.conv-bn-relu#65",
|
| 89 |
+
[
|
| 90 |
+
56,
|
| 91 |
+
24,
|
| 92 |
+
72,
|
| 93 |
+
1,
|
| 94 |
+
1
|
| 95 |
+
],
|
| 96 |
+
0.1313259719999998
|
| 97 |
+
],
|
| 98 |
+
[
|
| 99 |
+
"layer4.2.dwconv-bn-relu#66",
|
| 100 |
+
[
|
| 101 |
+
56,
|
| 102 |
+
72,
|
| 103 |
+
72,
|
| 104 |
+
3,
|
| 105 |
+
1
|
| 106 |
+
],
|
| 107 |
+
0.10148598884424595
|
| 108 |
+
],
|
| 109 |
+
[
|
| 110 |
+
"layer4.3.conv-bn-add#67",
|
| 111 |
+
[
|
| 112 |
+
56,
|
| 113 |
+
72,
|
| 114 |
+
24,
|
| 115 |
+
1,
|
| 116 |
+
1
|
| 117 |
+
],
|
| 118 |
+
0.12938113733333315
|
| 119 |
+
],
|
| 120 |
+
[
|
| 121 |
+
"layer5.1.conv-bn-relu#68",
|
| 122 |
+
[
|
| 123 |
+
56,
|
| 124 |
+
24,
|
| 125 |
+
72,
|
| 126 |
+
1,
|
| 127 |
+
1
|
| 128 |
+
],
|
| 129 |
+
0.1313259719999998
|
| 130 |
+
],
|
| 131 |
+
[
|
| 132 |
+
"layer5.2.dwconv-bn#69",
|
| 133 |
+
[
|
| 134 |
+
56,
|
| 135 |
+
72,
|
| 136 |
+
72,
|
| 137 |
+
5,
|
| 138 |
+
2
|
| 139 |
+
],
|
| 140 |
+
0.13221349583333308
|
| 141 |
+
],
|
| 142 |
+
[
|
| 143 |
+
"layer5.2.se-relu#70",
|
| 144 |
+
[
|
| 145 |
+
28,
|
| 146 |
+
72
|
| 147 |
+
],
|
| 148 |
+
0.2514369789473686
|
| 149 |
+
],
|
| 150 |
+
[
|
| 151 |
+
"layer5.3.conv-bn#71",
|
| 152 |
+
[
|
| 153 |
+
28,
|
| 154 |
+
72,
|
| 155 |
+
40,
|
| 156 |
+
1,
|
| 157 |
+
1
|
| 158 |
+
],
|
| 159 |
+
0.06686152977777766
|
| 160 |
+
],
|
| 161 |
+
[
|
| 162 |
+
"layer6.1.conv-bn-relu#72",
|
| 163 |
+
[
|
| 164 |
+
28,
|
| 165 |
+
40,
|
| 166 |
+
120,
|
| 167 |
+
1,
|
| 168 |
+
1
|
| 169 |
+
],
|
| 170 |
+
0.09544240288888854
|
| 171 |
+
],
|
| 172 |
+
[
|
| 173 |
+
"layer6.2.dwconv-bn#73",
|
| 174 |
+
[
|
| 175 |
+
28,
|
| 176 |
+
120,
|
| 177 |
+
120,
|
| 178 |
+
5,
|
| 179 |
+
1
|
| 180 |
+
],
|
| 181 |
+
0.1791692834623016
|
| 182 |
+
],
|
| 183 |
+
[
|
| 184 |
+
"layer6.2.se-relu#74",
|
| 185 |
+
[
|
| 186 |
+
28,
|
| 187 |
+
120
|
| 188 |
+
],
|
| 189 |
+
0.29275722631578976
|
| 190 |
+
],
|
| 191 |
+
[
|
| 192 |
+
"layer6.3.conv-bn-add#75",
|
| 193 |
+
[
|
| 194 |
+
28,
|
| 195 |
+
120,
|
| 196 |
+
40,
|
| 197 |
+
1,
|
| 198 |
+
1
|
| 199 |
+
],
|
| 200 |
+
0.09891386688888877
|
| 201 |
+
],
|
| 202 |
+
[
|
| 203 |
+
"layer7.1.conv-bn-relu#76",
|
| 204 |
+
[
|
| 205 |
+
28,
|
| 206 |
+
40,
|
| 207 |
+
120,
|
| 208 |
+
1,
|
| 209 |
+
1
|
| 210 |
+
],
|
| 211 |
+
0.09544240288888854
|
| 212 |
+
],
|
| 213 |
+
[
|
| 214 |
+
"layer7.2.dwconv-bn#77",
|
| 215 |
+
[
|
| 216 |
+
28,
|
| 217 |
+
120,
|
| 218 |
+
120,
|
| 219 |
+
5,
|
| 220 |
+
1
|
| 221 |
+
],
|
| 222 |
+
0.1791692834623016
|
| 223 |
+
],
|
| 224 |
+
[
|
| 225 |
+
"layer7.2.se-relu#78",
|
| 226 |
+
[
|
| 227 |
+
28,
|
| 228 |
+
120
|
| 229 |
+
],
|
| 230 |
+
0.29275722631578976
|
| 231 |
+
],
|
| 232 |
+
[
|
| 233 |
+
"layer7.3.conv-bn-add#79",
|
| 234 |
+
[
|
| 235 |
+
28,
|
| 236 |
+
120,
|
| 237 |
+
40,
|
| 238 |
+
1,
|
| 239 |
+
1
|
| 240 |
+
],
|
| 241 |
+
0.09891386688888877
|
| 242 |
+
],
|
| 243 |
+
[
|
| 244 |
+
"layer8.1.conv-bn#80",
|
| 245 |
+
[
|
| 246 |
+
28,
|
| 247 |
+
40,
|
| 248 |
+
240,
|
| 249 |
+
1,
|
| 250 |
+
1
|
| 251 |
+
],
|
| 252 |
+
0.17468612444444476
|
| 253 |
+
],
|
| 254 |
+
[
|
| 255 |
+
"layer8.1.hswish#81",
|
| 256 |
+
[
|
| 257 |
+
28,
|
| 258 |
+
240
|
| 259 |
+
],
|
| 260 |
+
0.034863998421052596
|
| 261 |
+
],
|
| 262 |
+
[
|
| 263 |
+
"layer8.2.dwconv-bn#82",
|
| 264 |
+
[
|
| 265 |
+
28,
|
| 266 |
+
240,
|
| 267 |
+
240,
|
| 268 |
+
3,
|
| 269 |
+
2
|
| 270 |
+
],
|
| 271 |
+
0.05733039375000008
|
| 272 |
+
],
|
| 273 |
+
[
|
| 274 |
+
"layer8.2.hswish#83",
|
| 275 |
+
[
|
| 276 |
+
14,
|
| 277 |
+
240
|
| 278 |
+
],
|
| 279 |
+
0.01200028842105264
|
| 280 |
+
],
|
| 281 |
+
[
|
| 282 |
+
"layer8.3.conv-bn#84",
|
| 283 |
+
[
|
| 284 |
+
14,
|
| 285 |
+
240,
|
| 286 |
+
80,
|
| 287 |
+
1,
|
| 288 |
+
1
|
| 289 |
+
],
|
| 290 |
+
0.1185776239999995
|
| 291 |
+
],
|
| 292 |
+
[
|
| 293 |
+
"layer9.1.conv-bn#85",
|
| 294 |
+
[
|
| 295 |
+
14,
|
| 296 |
+
80,
|
| 297 |
+
200,
|
| 298 |
+
1,
|
| 299 |
+
1
|
| 300 |
+
],
|
| 301 |
+
0.07862664244444413
|
| 302 |
+
],
|
| 303 |
+
[
|
| 304 |
+
"layer9.1.hswish#86",
|
| 305 |
+
[
|
| 306 |
+
14,
|
| 307 |
+
200
|
| 308 |
+
],
|
| 309 |
+
0.010081669999999966
|
| 310 |
+
],
|
| 311 |
+
[
|
| 312 |
+
"layer9.2.dwconv-bn#87",
|
| 313 |
+
[
|
| 314 |
+
14,
|
| 315 |
+
200,
|
| 316 |
+
200,
|
| 317 |
+
3,
|
| 318 |
+
1
|
| 319 |
+
],
|
| 320 |
+
0.024046657092261906
|
| 321 |
+
],
|
| 322 |
+
[
|
| 323 |
+
"layer9.2.hswish#88",
|
| 324 |
+
[
|
| 325 |
+
14,
|
| 326 |
+
200
|
| 327 |
+
],
|
| 328 |
+
0.010081669999999966
|
| 329 |
+
],
|
| 330 |
+
[
|
| 331 |
+
"layer9.3.conv-bn-add#89",
|
| 332 |
+
[
|
| 333 |
+
14,
|
| 334 |
+
200,
|
| 335 |
+
80,
|
| 336 |
+
1,
|
| 337 |
+
1
|
| 338 |
+
],
|
| 339 |
+
0.10319714688888944
|
| 340 |
+
],
|
| 341 |
+
[
|
| 342 |
+
"layer10.1.conv-bn#90",
|
| 343 |
+
[
|
| 344 |
+
14,
|
| 345 |
+
80,
|
| 346 |
+
184,
|
| 347 |
+
1,
|
| 348 |
+
1
|
| 349 |
+
],
|
| 350 |
+
0.07391564955555524
|
| 351 |
+
],
|
| 352 |
+
[
|
| 353 |
+
"layer10.1.hswish#91",
|
| 354 |
+
[
|
| 355 |
+
14,
|
| 356 |
+
184
|
| 357 |
+
],
|
| 358 |
+
0.00995709136842104
|
| 359 |
+
],
|
| 360 |
+
[
|
| 361 |
+
"layer10.2.dwconv-bn#92",
|
| 362 |
+
[
|
| 363 |
+
14,
|
| 364 |
+
184,
|
| 365 |
+
184,
|
| 366 |
+
3,
|
| 367 |
+
1
|
| 368 |
+
],
|
| 369 |
+
0.022844432440476167
|
| 370 |
+
],
|
| 371 |
+
[
|
| 372 |
+
"layer10.2.hswish#93",
|
| 373 |
+
[
|
| 374 |
+
14,
|
| 375 |
+
184
|
| 376 |
+
],
|
| 377 |
+
0.00995709136842104
|
| 378 |
+
],
|
| 379 |
+
[
|
| 380 |
+
"layer10.3.conv-bn-add#94",
|
| 381 |
+
[
|
| 382 |
+
14,
|
| 383 |
+
184,
|
| 384 |
+
80,
|
| 385 |
+
1,
|
| 386 |
+
1
|
| 387 |
+
],
|
| 388 |
+
0.09344137288888908
|
| 389 |
+
],
|
| 390 |
+
[
|
| 391 |
+
"layer11.1.conv-bn#95",
|
| 392 |
+
[
|
| 393 |
+
14,
|
| 394 |
+
80,
|
| 395 |
+
184,
|
| 396 |
+
1,
|
| 397 |
+
1
|
| 398 |
+
],
|
| 399 |
+
0.07391564955555524
|
| 400 |
+
],
|
| 401 |
+
[
|
| 402 |
+
"layer11.1.hswish#96",
|
| 403 |
+
[
|
| 404 |
+
14,
|
| 405 |
+
184
|
| 406 |
+
],
|
| 407 |
+
0.00995709136842104
|
| 408 |
+
],
|
| 409 |
+
[
|
| 410 |
+
"layer11.2.dwconv-bn#97",
|
| 411 |
+
[
|
| 412 |
+
14,
|
| 413 |
+
184,
|
| 414 |
+
184,
|
| 415 |
+
3,
|
| 416 |
+
1
|
| 417 |
+
],
|
| 418 |
+
0.022844432440476167
|
| 419 |
+
],
|
| 420 |
+
[
|
| 421 |
+
"layer11.2.hswish#98",
|
| 422 |
+
[
|
| 423 |
+
14,
|
| 424 |
+
184
|
| 425 |
+
],
|
| 426 |
+
0.00995709136842104
|
| 427 |
+
],
|
| 428 |
+
[
|
| 429 |
+
"layer11.3.conv-bn-add#99",
|
| 430 |
+
[
|
| 431 |
+
14,
|
| 432 |
+
184,
|
| 433 |
+
80,
|
| 434 |
+
1,
|
| 435 |
+
1
|
| 436 |
+
],
|
| 437 |
+
0.09344137288888908
|
| 438 |
+
],
|
| 439 |
+
[
|
| 440 |
+
"layer12.1.conv-bn#100",
|
| 441 |
+
[
|
| 442 |
+
14,
|
| 443 |
+
80,
|
| 444 |
+
480,
|
| 445 |
+
1,
|
| 446 |
+
1
|
| 447 |
+
],
|
| 448 |
+
0.1664279088888898
|
| 449 |
+
],
|
| 450 |
+
[
|
| 451 |
+
"layer12.1.hswish#101",
|
| 452 |
+
[
|
| 453 |
+
14,
|
| 454 |
+
480
|
| 455 |
+
],
|
| 456 |
+
0.020963691052631548
|
| 457 |
+
],
|
| 458 |
+
[
|
| 459 |
+
"layer12.2.dwconv-bn#102",
|
| 460 |
+
[
|
| 461 |
+
14,
|
| 462 |
+
480,
|
| 463 |
+
480,
|
| 464 |
+
3,
|
| 465 |
+
1
|
| 466 |
+
],
|
| 467 |
+
0.05033707406646825
|
| 468 |
+
],
|
| 469 |
+
[
|
| 470 |
+
"layer12.2.se#103",
|
| 471 |
+
[
|
| 472 |
+
14,
|
| 473 |
+
480
|
| 474 |
+
],
|
| 475 |
+
0.30968490526315845
|
| 476 |
+
],
|
| 477 |
+
[
|
| 478 |
+
"layer12.2.hswish#104",
|
| 479 |
+
[
|
| 480 |
+
14,
|
| 481 |
+
480
|
| 482 |
+
],
|
| 483 |
+
0.020963691052631548
|
| 484 |
+
],
|
| 485 |
+
[
|
| 486 |
+
"layer12.3.conv-bn#105",
|
| 487 |
+
[
|
| 488 |
+
14,
|
| 489 |
+
480,
|
| 490 |
+
112,
|
| 491 |
+
1,
|
| 492 |
+
1
|
| 493 |
+
],
|
| 494 |
+
0.2822340977777797
|
| 495 |
+
],
|
| 496 |
+
[
|
| 497 |
+
"layer13.1.conv-bn#106",
|
| 498 |
+
[
|
| 499 |
+
14,
|
| 500 |
+
112,
|
| 501 |
+
672,
|
| 502 |
+
1,
|
| 503 |
+
1
|
| 504 |
+
],
|
| 505 |
+
0.31593401333333454
|
| 506 |
+
],
|
| 507 |
+
[
|
| 508 |
+
"layer13.1.hswish#107",
|
| 509 |
+
[
|
| 510 |
+
14,
|
| 511 |
+
672
|
| 512 |
+
],
|
| 513 |
+
0.028506453157894702
|
| 514 |
+
],
|
| 515 |
+
[
|
| 516 |
+
"layer13.2.dwconv-bn#108",
|
| 517 |
+
[
|
| 518 |
+
14,
|
| 519 |
+
672,
|
| 520 |
+
672,
|
| 521 |
+
3,
|
| 522 |
+
1
|
| 523 |
+
],
|
| 524 |
+
0.06833738649305546
|
| 525 |
+
],
|
| 526 |
+
[
|
| 527 |
+
"layer13.2.se#109",
|
| 528 |
+
[
|
| 529 |
+
14,
|
| 530 |
+
672
|
| 531 |
+
],
|
| 532 |
+
0.4181391842105277
|
| 533 |
+
],
|
| 534 |
+
[
|
| 535 |
+
"layer13.2.hswish#110",
|
| 536 |
+
[
|
| 537 |
+
14,
|
| 538 |
+
672
|
| 539 |
+
],
|
| 540 |
+
0.028506453157894702
|
| 541 |
+
],
|
| 542 |
+
[
|
| 543 |
+
"layer13.3.conv-bn-add#111",
|
| 544 |
+
[
|
| 545 |
+
14,
|
| 546 |
+
672,
|
| 547 |
+
112,
|
| 548 |
+
1,
|
| 549 |
+
1
|
| 550 |
+
],
|
| 551 |
+
0.38993811555555447
|
| 552 |
+
],
|
| 553 |
+
[
|
| 554 |
+
"layer14.1.conv-bn#112",
|
| 555 |
+
[
|
| 556 |
+
14,
|
| 557 |
+
112,
|
| 558 |
+
672,
|
| 559 |
+
1,
|
| 560 |
+
1
|
| 561 |
+
],
|
| 562 |
+
0.31593401333333454
|
| 563 |
+
],
|
| 564 |
+
[
|
| 565 |
+
"layer14.1.hswish#113",
|
| 566 |
+
[
|
| 567 |
+
14,
|
| 568 |
+
672
|
| 569 |
+
],
|
| 570 |
+
0.028506453157894702
|
| 571 |
+
],
|
| 572 |
+
[
|
| 573 |
+
"layer14.2.dwconv-bn#114",
|
| 574 |
+
[
|
| 575 |
+
14,
|
| 576 |
+
672,
|
| 577 |
+
672,
|
| 578 |
+
5,
|
| 579 |
+
2
|
| 580 |
+
],
|
| 581 |
+
0.12773641041666683
|
| 582 |
+
],
|
| 583 |
+
[
|
| 584 |
+
"layer14.2.se#115",
|
| 585 |
+
[
|
| 586 |
+
7,
|
| 587 |
+
672
|
| 588 |
+
],
|
| 589 |
+
0.15399494736842148
|
| 590 |
+
],
|
| 591 |
+
[
|
| 592 |
+
"layer14.2.hswish#116",
|
| 593 |
+
[
|
| 594 |
+
7,
|
| 595 |
+
672
|
| 596 |
+
],
|
| 597 |
+
0.011023535789473677
|
| 598 |
+
],
|
| 599 |
+
[
|
| 600 |
+
"layer14.3.conv-bn#117",
|
| 601 |
+
[
|
| 602 |
+
7,
|
| 603 |
+
672,
|
| 604 |
+
160,
|
| 605 |
+
1,
|
| 606 |
+
1
|
| 607 |
+
],
|
| 608 |
+
0.27822387777777746
|
| 609 |
+
],
|
| 610 |
+
[
|
| 611 |
+
"layer15.1.conv-bn#118",
|
| 612 |
+
[
|
| 613 |
+
7,
|
| 614 |
+
160,
|
| 615 |
+
960,
|
| 616 |
+
1,
|
| 617 |
+
1
|
| 618 |
+
],
|
| 619 |
+
0.32120322444444405
|
| 620 |
+
],
|
| 621 |
+
[
|
| 622 |
+
"layer15.1.hswish#119",
|
| 623 |
+
[
|
| 624 |
+
7,
|
| 625 |
+
960
|
| 626 |
+
],
|
| 627 |
+
0.014172026315789451
|
| 628 |
+
],
|
| 629 |
+
[
|
| 630 |
+
"layer15.2.dwconv-bn#120",
|
| 631 |
+
[
|
| 632 |
+
7,
|
| 633 |
+
960,
|
| 634 |
+
960,
|
| 635 |
+
5,
|
| 636 |
+
1
|
| 637 |
+
],
|
| 638 |
+
0.11106422500000021
|
| 639 |
+
],
|
| 640 |
+
[
|
| 641 |
+
"layer15.2.se#121",
|
| 642 |
+
[
|
| 643 |
+
7,
|
| 644 |
+
960
|
| 645 |
+
],
|
| 646 |
+
0.21297702631578969
|
| 647 |
+
],
|
| 648 |
+
[
|
| 649 |
+
"layer15.2.hswish#122",
|
| 650 |
+
[
|
| 651 |
+
7,
|
| 652 |
+
960
|
| 653 |
+
],
|
| 654 |
+
0.014172026315789451
|
| 655 |
+
],
|
| 656 |
+
[
|
| 657 |
+
"layer15.3.conv-bn-add#123",
|
| 658 |
+
[
|
| 659 |
+
7,
|
| 660 |
+
960,
|
| 661 |
+
160,
|
| 662 |
+
1,
|
| 663 |
+
1
|
| 664 |
+
],
|
| 665 |
+
0.4788489133333347
|
| 666 |
+
],
|
| 667 |
+
[
|
| 668 |
+
"layer16.1.conv-bn#124",
|
| 669 |
+
[
|
| 670 |
+
7,
|
| 671 |
+
160,
|
| 672 |
+
960,
|
| 673 |
+
1,
|
| 674 |
+
1
|
| 675 |
+
],
|
| 676 |
+
0.32120322444444405
|
| 677 |
+
],
|
| 678 |
+
[
|
| 679 |
+
"layer16.1.hswish#125",
|
| 680 |
+
[
|
| 681 |
+
7,
|
| 682 |
+
960
|
| 683 |
+
],
|
| 684 |
+
0.014172026315789451
|
| 685 |
+
],
|
| 686 |
+
[
|
| 687 |
+
"layer16.2.dwconv-bn#126",
|
| 688 |
+
[
|
| 689 |
+
7,
|
| 690 |
+
960,
|
| 691 |
+
960,
|
| 692 |
+
5,
|
| 693 |
+
1
|
| 694 |
+
],
|
| 695 |
+
0.11106422500000021
|
| 696 |
+
],
|
| 697 |
+
[
|
| 698 |
+
"layer16.2.se#127",
|
| 699 |
+
[
|
| 700 |
+
7,
|
| 701 |
+
960
|
| 702 |
+
],
|
| 703 |
+
0.21297702631578969
|
| 704 |
+
],
|
| 705 |
+
[
|
| 706 |
+
"layer16.2.hswish#128",
|
| 707 |
+
[
|
| 708 |
+
7,
|
| 709 |
+
960
|
| 710 |
+
],
|
| 711 |
+
0.014172026315789451
|
| 712 |
+
],
|
| 713 |
+
[
|
| 714 |
+
"layer16.3.conv-bn-add#129",
|
| 715 |
+
[
|
| 716 |
+
7,
|
| 717 |
+
960,
|
| 718 |
+
160,
|
| 719 |
+
1,
|
| 720 |
+
1
|
| 721 |
+
],
|
| 722 |
+
0.4788489133333347
|
| 723 |
+
],
|
| 724 |
+
[
|
| 725 |
+
"layer17.1.conv-bn#130",
|
| 726 |
+
[
|
| 727 |
+
7,
|
| 728 |
+
160,
|
| 729 |
+
1280,
|
| 730 |
+
1,
|
| 731 |
+
1
|
| 732 |
+
],
|
| 733 |
+
0.40695861999999977
|
| 734 |
+
],
|
| 735 |
+
[
|
| 736 |
+
"layer17.1.hswish#131",
|
| 737 |
+
[
|
| 738 |
+
7,
|
| 739 |
+
1280
|
| 740 |
+
],
|
| 741 |
+
0.01831055315789479
|
| 742 |
+
],
|
| 743 |
+
[
|
| 744 |
+
"layer18.1.gap#132",
|
| 745 |
+
[
|
| 746 |
+
1,
|
| 747 |
+
1280
|
| 748 |
+
],
|
| 749 |
+
0.001
|
| 750 |
+
],
|
| 751 |
+
[
|
| 752 |
+
"layer19.1.fc#133",
|
| 753 |
+
[
|
| 754 |
+
1280,
|
| 755 |
+
1920
|
| 756 |
+
],
|
| 757 |
+
0.168
|
| 758 |
+
]
|
| 759 |
+
]
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-e git+https://github.com/microsoft/nn-Meter.git@dev/block-latency#egg=nn-Meter
|
| 2 |
+
tensorflow==2.6.0
|
| 3 |
+
torch==1.9.0
|
| 4 |
+
torchvision==0.10.0
|
| 5 |
+
onnx==1.10.0
|
| 6 |
+
onnx-simplifier==0.3.6
|
samples/mobilenetv3small_0.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
samples/mobilenetv3small_0.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:25e6117900a394d143f56b53648c680ad93a7563ee472c419d4f416f5b77485a
|
| 3 |
+
size 10169165
|
samples/mobilenetv3small_0.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7790ba98e0e6981fee7c09babae466fe29dcef1ad5dc9bd5cc28929017c0123
|
| 3 |
+
size 8098911
|