Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
| 2 |
with gr.Row():
|
| 3 |
gr.Markdown("""
|
|
@@ -79,4 +274,13 @@ with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
|
| 79 |
None,
|
| 80 |
chatbot,
|
| 81 |
queue=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PyPDF2 import PdfReader
|
| 5 |
+
from transformers import (
|
| 6 |
+
AutoTokenizer, pipeline,
|
| 7 |
+
AutoModelForCausalLM, AutoConfig,
|
| 8 |
+
BitsAndBytesConfig
|
| 9 |
+
)
|
| 10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 11 |
+
from langchain_community.vectorstores import FAISS
|
| 12 |
+
from langchain.prompts import PromptTemplate
|
| 13 |
+
from langchain.chains import LLMChain
|
| 14 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 15 |
+
from langchain.schema import Document
|
| 16 |
+
from langchain import HuggingFacePipeline
|
| 17 |
+
|
| 18 |
+
# ------------------------------
|
| 19 |
+
# Device setup
|
| 20 |
+
# ------------------------------
|
| 21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
+
|
| 23 |
+
# ------------------------------
|
| 24 |
+
# Embedding model config
|
| 25 |
+
# ------------------------------
|
| 26 |
+
modelPath = "sentence-transformers/all-mpnet-base-v2"
|
| 27 |
+
model_kwargs = {"device": str(device)}
|
| 28 |
+
encode_kwargs = {"normalize_embedding": False}
|
| 29 |
+
|
| 30 |
+
embeddings = HuggingFaceEmbeddings(
|
| 31 |
+
model_name=modelPath,
|
| 32 |
+
model_kwargs=model_kwargs,
|
| 33 |
+
encode_kwargs=encode_kwargs
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# ------------------------------
|
| 37 |
+
# Load Mistral model in 4bit
|
| 38 |
+
# ------------------------------
|
| 39 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 41 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 42 |
+
tokenizer.padding_side = "right"
|
| 43 |
+
|
| 44 |
+
# 4-bit quantization config
|
| 45 |
+
bnb_config = BitsAndBytesConfig(
|
| 46 |
+
load_in_4bit=True,
|
| 47 |
+
bnb_4bit_quant_type="nf4",
|
| 48 |
+
bnb_4bit_use_double_quant=True,
|
| 49 |
+
bnb_4bit_compute_dtype=torch.float16
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Load model
|
| 53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 54 |
+
model_name,
|
| 55 |
+
quantization_config=bnb_config,
|
| 56 |
+
device_map="auto"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# ------------------------------
|
| 60 |
+
# Improved Text Generation Pipeline
|
| 61 |
+
# ------------------------------
|
| 62 |
+
text_generation = pipeline(
|
| 63 |
+
model=model,
|
| 64 |
+
tokenizer=tokenizer,
|
| 65 |
+
task="text-generation",
|
| 66 |
+
temperature=0.7,
|
| 67 |
+
top_p=0.9,
|
| 68 |
+
top_k=50,
|
| 69 |
+
repetition_penalty=1.1,
|
| 70 |
+
return_full_text=False,
|
| 71 |
+
max_new_tokens=2000,
|
| 72 |
+
do_sample=True,
|
| 73 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Wrap in LangChain interface
|
| 77 |
+
mistral_llm = HuggingFacePipeline(pipeline=text_generation)
|
| 78 |
+
|
| 79 |
+
# ------------------------------
|
| 80 |
+
# PDF Processing Functions
|
| 81 |
+
# ------------------------------
|
| 82 |
+
def pdf_text(pdf_docs):
|
| 83 |
+
text = ""
|
| 84 |
+
for doc in pdf_docs:
|
| 85 |
+
reader = PdfReader(doc)
|
| 86 |
+
for page in reader.pages:
|
| 87 |
+
page_text = page.extract_text()
|
| 88 |
+
if page_text:
|
| 89 |
+
text += page_text + "\n"
|
| 90 |
+
return text
|
| 91 |
+
|
| 92 |
+
def get_chunks(text):
|
| 93 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 94 |
+
chunk_size=1000,
|
| 95 |
+
chunk_overlap=200,
|
| 96 |
+
length_function=len
|
| 97 |
+
)
|
| 98 |
+
chunks = splitter.split_text(text)
|
| 99 |
+
return [Document(page_content=chunk) for chunk in chunks]
|
| 100 |
+
|
| 101 |
+
def get_vectorstore(documents):
|
| 102 |
+
db = FAISS.from_documents(documents, embedding=embeddings)
|
| 103 |
+
db.save_local("faiss_index")
|
| 104 |
+
|
| 105 |
+
# ------------------------------
|
| 106 |
+
# Conversational Prompt Template
|
| 107 |
+
# ------------------------------
|
| 108 |
+
def get_qa_prompt():
|
| 109 |
+
prompt_template = """<s>[INST]
|
| 110 |
+
You are a helpful, knowledgeable AI assistant. Answer the user's question based on the provided context.
|
| 111 |
+
|
| 112 |
+
Guidelines:
|
| 113 |
+
- Respond in a natural, conversational tone
|
| 114 |
+
- Be detailed but concise
|
| 115 |
+
- Use paragraphs and bullet points when appropriate
|
| 116 |
+
- If you don't know, say so
|
| 117 |
+
- Maintain a friendly and professional demeanor
|
| 118 |
+
|
| 119 |
+
Conversation History:
|
| 120 |
+
{chat_history}
|
| 121 |
+
|
| 122 |
+
Relevant Context:
|
| 123 |
+
{context}
|
| 124 |
+
|
| 125 |
+
Current Question: {question}
|
| 126 |
+
|
| 127 |
+
Provide a helpful response: [/INST]"""
|
| 128 |
+
|
| 129 |
+
return PromptTemplate(
|
| 130 |
+
template=prompt_template,
|
| 131 |
+
input_variables=["context", "question", "chat_history"]
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# ------------------------------
|
| 135 |
+
# Chat Handling Functions
|
| 136 |
+
# ------------------------------
|
| 137 |
+
def handle_pdf_upload(pdf_files):
|
| 138 |
+
try:
|
| 139 |
+
if not pdf_files:
|
| 140 |
+
return "⚠️ Please upload at least one PDF file"
|
| 141 |
+
|
| 142 |
+
text = pdf_text(pdf_files)
|
| 143 |
+
if not text.strip():
|
| 144 |
+
return "⚠️ Could not extract text from PDFs - please try different files"
|
| 145 |
+
|
| 146 |
+
chunks = get_chunks(text)
|
| 147 |
+
get_vectorstore(chunks)
|
| 148 |
+
return f"✅ Processed {len(pdf_files)} PDF(s) with {len(chunks)} text chunks"
|
| 149 |
+
except Exception as e:
|
| 150 |
+
return f"❌ Error: {str(e)}"
|
| 151 |
+
|
| 152 |
+
def format_chat_history(chat_history):
|
| 153 |
+
return "\n".join([f"User: {q}\nAssistant: {a}" for q, a in chat_history[-3:]])
|
| 154 |
+
|
| 155 |
+
def user_query(msg, chat_history):
|
| 156 |
+
if not os.path.exists("faiss_index"):
|
| 157 |
+
chat_history.append((msg, "Please upload PDF documents first so I can help you."))
|
| 158 |
+
return "", chat_history
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
# Load vector store
|
| 162 |
+
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
| 163 |
+
retriever = db.as_retriever(search_kwargs={"k": 3})
|
| 164 |
+
|
| 165 |
+
# Get relevant context
|
| 166 |
+
docs = retriever.get_relevant_documents(msg)
|
| 167 |
+
context = "\n\n".join([d.page_content for d in docs])
|
| 168 |
+
|
| 169 |
+
# Generate response
|
| 170 |
+
prompt = get_qa_prompt()
|
| 171 |
+
chain = LLMChain(llm=mistral_llm, prompt=prompt)
|
| 172 |
+
|
| 173 |
+
response = chain.run({
|
| 174 |
+
"question": msg,
|
| 175 |
+
"context": context,
|
| 176 |
+
"chat_history": format_chat_history(chat_history)
|
| 177 |
+
})
|
| 178 |
+
|
| 179 |
+
# Clean response
|
| 180 |
+
response = response.strip()
|
| 181 |
+
for end_token in ["</s>", "[INST]", "[/INST]"]:
|
| 182 |
+
if response.endswith(end_token):
|
| 183 |
+
response = response[:-len(end_token)].strip()
|
| 184 |
+
|
| 185 |
+
chat_history.append((msg, response))
|
| 186 |
+
return "", chat_history
|
| 187 |
+
|
| 188 |
+
except Exception as e:
|
| 189 |
+
error_msg = f"Sorry, I encountered an error: {str(e)}"
|
| 190 |
+
chat_history.append((msg, error_msg))
|
| 191 |
+
return "", chat_history
|
| 192 |
+
|
| 193 |
+
# ------------------------------
|
| 194 |
+
# Gradio Interface
|
| 195 |
+
# ------------------------------
|
| 196 |
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
| 197 |
with gr.Row():
|
| 198 |
gr.Markdown("""
|
|
|
|
| 274 |
None,
|
| 275 |
chatbot,
|
| 276 |
queue=False
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
# Launch the app
|
| 280 |
+
if __name__ == "__main__":
|
| 281 |
+
demo.launch(
|
| 282 |
+
server_name="0.0.0.0",
|
| 283 |
+
server_port=7861,
|
| 284 |
+
share=True,
|
| 285 |
+
debug=True
|
| 286 |
)
|