Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,73 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
],
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
|
| 4 |
|
| 5 |
+
# Device configuration
|
| 6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Load models
|
| 9 |
+
fill_mask = pipeline("fill-mask", model="bert-base-uncased")
|
| 10 |
+
corrector = pipeline("text2text-generation", model="pszemraj/grammar-synthesis-small")
|
| 11 |
+
tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-uk-to-us-english")
|
| 12 |
+
model = T5ForConditionalGeneration.from_pretrained("EnglishVoice/t5-base-uk-to-us-english").to(device)
|
| 13 |
|
| 14 |
+
# Fill Mask Function
|
| 15 |
+
def fill_mask_function(text):
|
| 16 |
+
if "_" not in text:
|
| 17 |
+
return "Please add an underscore (_) where you want the mask to be predicted."
|
| 18 |
+
text_with_mask = text.replace("_", "[MASK]")
|
| 19 |
+
predictions = fill_mask(text_with_mask)
|
| 20 |
+
filtered = [p for p in predictions if p['token_str'].isalnum()]
|
| 21 |
+
if not filtered:
|
| 22 |
+
return "No valid predictions."
|
| 23 |
+
return "\n".join([f"{p['sequence']} (Score: {p['score']:.4f})" for p in filtered])
|
| 24 |
|
| 25 |
+
# Grammar Correction Function
|
| 26 |
+
def grammar_correction_function(text):
|
| 27 |
+
corrected = corrector(text)
|
| 28 |
+
return corrected[0]['generated_text']
|
|
|
|
| 29 |
|
| 30 |
+
# UK to US English Conversion
|
| 31 |
+
def uk_to_us_function(text):
|
| 32 |
+
try:
|
| 33 |
+
input_text = f"UK to US: {text}"
|
| 34 |
+
encoding = tokenizer.encode_plus(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 35 |
+
input_ids = encoding["input_ids"].to(device)
|
| 36 |
+
attention_mask = encoding["attention_mask"].to(device)
|
| 37 |
|
| 38 |
+
output_ids = model.generate(
|
| 39 |
+
input_ids=input_ids,
|
| 40 |
+
attention_mask=attention_mask,
|
| 41 |
+
max_length=150,
|
| 42 |
+
num_beams=5,
|
| 43 |
+
early_stopping=True
|
| 44 |
+
)
|
| 45 |
+
result = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 46 |
+
return result
|
| 47 |
+
except Exception as e:
|
| 48 |
+
return f"Error: {str(e)}"
|
| 49 |
|
| 50 |
+
# Interface Function
|
| 51 |
+
def interface_function(choice, text):
|
| 52 |
+
if choice == "Fill Mask":
|
| 53 |
+
return fill_mask_function(text)
|
| 54 |
+
elif choice == "Grammar Correction":
|
| 55 |
+
return grammar_correction_function(text)
|
| 56 |
+
elif choice == "UK to US English":
|
| 57 |
+
return uk_to_us_function(text)
|
| 58 |
|
| 59 |
+
# Gradio Interface
|
| 60 |
+
iface = gr.Interface(
|
| 61 |
+
fn=interface_function,
|
| 62 |
+
inputs=[
|
| 63 |
+
gr.Radio(["Fill Mask", "Grammar Correction", "UK to US English"], label="Choose Functionality"),
|
| 64 |
+
gr.Textbox(lines=3, placeholder="Enter your text here...", label="Input Text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
],
|
| 66 |
+
outputs=gr.Textbox(label="Output Result"),
|
| 67 |
+
title="Language Processing App",
|
| 68 |
+
description="Choose one of the functionalities and provide input text. Supported tasks:\n- Fill Mask: Predict missing words.\n- Grammar Correction: Correct grammatical errors.\n- UK to US English: Convert British English to American English."
|
| 69 |
)
|
| 70 |
|
| 71 |
+
# Launch Interface
|
| 72 |
if __name__ == "__main__":
|
| 73 |
+
iface.launch()
|