File size: 13,228 Bytes
6d10b44
 
 
 
 
 
 
 
 
 
 
 
b9f5581
6d10b44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans, AgglomerativeClustering
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.cluster.hierarchy import linkage, dendrogram
from sklearn.metrics.pairwise import cosine_similarity
import streamlit as st

data_path = 'micro_world_139countries.csv'
data = pd.read_csv(data_path, encoding='ISO-8859-1', low_memory=False)
df = pd.read_csv(data_path, encoding='ISO-8859-1')

subset_cols = ['economycode', 'age', 'fin7', 'fin8', 'fin8a', 'fin8b', 'fin22a', 'fin24', 'fin34a', 'anydigpayment', 'fin30', 'inc_q', 'educ', 'urbanicity_f2f', 'emp_in']
subset_df = df[subset_cols].dropna()

cc_usage_country = subset_df.groupby('economycode')['fin8'].sum()
total_usage = cc_usage_country.sum()
total_usage_prc = (cc_usage_country / total_usage) * 100

st.title('Welcome to my humble analysis :sunglasses:')

#REFRESH
if st.button('Refresh Page'):
    st.experimental_rerun()


#===================================================================================================
#DESCRIPTIVES 1st ASSIGNMENT #there are two csv reading so that it fits the 1st assignment's code...
#===================================================================================================
if st.button("CREDIT CARD USAGE DESCRIPTIVES"):
    # Bar chart
    plt.figure(figsize=(12, 6))
    plt.bar(total_usage_prc.index, total_usage_prc.values, color='green')
    plt.xlabel('Country', color='blue')
    plt.ylabel('Credit Card Usage (%)')
    plt.title('Credit Card Usage by Country %', color='blue')
    plt.xticks(rotation=90)
    plt.tight_layout()

    #dataframe conversion
    df_percentage = total_usage_prc.reset_index()
    df_percentage.columns = ['economycode', 'percentage']

    #get the economy codes
    min_prc_country = df_percentage.loc[df_percentage['percentage'].idxmin()]
    max_prc_country = df_percentage.loc[df_percentage['percentage'].idxmax()]

    st.write(f"The minimum CC usage is in: {min_prc_country['economycode']} {min_prc_country['percentage']:.2f}%")
    st.write(f"The maximum CC usage is in: {max_prc_country['economycode']} {max_prc_country['percentage']:.2f}%")

    # CC per country table
    st.table(df_percentage)
    st.bar_chart(total_usage_prc)


#=========================================================================================================
                                                #CLUSTERING
#=========================================================================================================

selected_columns = ['age', 'inc_q', 'fin44a', 'fin44b', 'fin44c', 'fin44d',
                    'borrowed', 'saved', 'account_fin', 'anydigpayment',
                    'internetaccess']

selected_columns=data[selected_columns] #converting to df, actually not needed :D

mean_values=selected_columns['age'].mean()
selected_columns.fillna(mean_values, inplace=True)


selected_columns.isnull().sum() #filling the 'age' missing vals with the column mean, also not needed HHAHAH

features = ['age', 'inc_q', 'fin44a', 'fin44b', 'fin44c', 'fin44d',
            'borrowed', 'saved', 'account_fin', 'anydigpayment',
            'internetaccess']

X = data[features]
X.isna().sum()
X_means=X['age'].mean()
X.fillna(X_means, inplace=True)
X.isna().sum() #here is needed :)

#X['age'] = pd.to_numeric(X['age'])
#X['age']

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
#print(X_scaled)

pca = PCA()
X_pca = pca.fit_transform(X_scaled)
#X_pca

explained_variance = pca.explained_variance_ratio_

with st.expander("Explained Variance"):
    plt.figure(figsize=(12,7))
    plt.bar(range(len(explained_variance)), explained_variance, alpha=0.7, align='center', color='teal')
    plt.ylabel('Explained Variance Ratio', fontsize=14)
    plt.xlabel('Principal Components', fontsize=14)
    plt.title('PCA: Explained Variance for Each Component', fontsize=16)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.tight_layout()
    plt.grid(axis='y')
    plt.show()

pca = PCA(n_components=2) #first 2 principal components
X_pca_2d = pca.fit_transform(X_scaled) #2D Dataframe

clusters = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, random_state=0).fit(X_pca_2d)
    clusters.append(kmeans.inertia_)

#plt.figure(figsize=(12,7))
#plt.plot(range(1, 11), clusters, marker='o', linestyle='--', color='teal')
#plt.xlabel('Number of Clusters', fontsize=14)
#plt.ylabel('Inertia', fontsize=14)
#plt.title('KMeans Elbow Method for Optimal k', fontsize=16)
#plt.xticks(fontsize=12)
#plt.yticks(fontsize=12)
#plt.grid(True)
#plt.show()

kmeans = KMeans(n_clusters=6, random_state=42)
kmeans.fit(X_pca_2d)
labels = kmeans.labels_
#print(labels)

#colors = ['red', 'blue', 'green', 'purple', 'black', 'cyan']
#plt.figure(figsize=(14,8))
#for i, color, label in zip(range(6), colors, ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'cluster 5', 'cluster 6']):
#    plt.scatter(X_pca_2d[labels == i, 0], X_pca_2d[labels == i, 1], s=60, c=color, label=label, alpha=0.6, edgecolors='w', linewidth=0.5)
#plt.legend(fontsize=12)
#plt.title('2D PCA with KMeans Clusters', fontsize=16)
#plt.xlabel('First Principal Component', fontsize=14)
#plt.ylabel('Second Principal Component', fontsize=14)
#plt.xticks(fontsize=12)
#plt.yticks(fontsize=12)
#plt.grid(True)
#plt.tight_layout()
#plt.show()

sample_data = X.sample(n=1000, random_state=42)
#print(sample_data.dtypes)

selected_columns = sample_data.columns #selected_columns redefined
#print(selected_columns)

le = LabelEncoder()
#sample_data['inc_q']=le.fit_transform(sample_data['inc_q'])
#sample_data['anydigpayment']=le.fit_transform(sample_data['anydigpayment'])
#sample_data['internetaccess'] = le.fit_transform(sample_data['internetaccess'])
#sample_data['borrowed'] = le.fit_transform(sample_data['borrowed'])
#sample_data['saved'] = le.fit_transform(sample_data['saved'])
#sample_data['account_fin'] = le.fit_transform(sample_data['account_fin'])
#sample_data['fin44a'] = le.fit_transform(sample_data['fin44a'])
#sample_data['fin44b'] = le.fit_transform(sample_data['fin44b'])
#sample_data['fin44c'] = le.fit_transform(sample_data['fin44c'])
#sample_data['fin44d'] = le.fit_transform(sample_data['fin44d'])
sample_data['age'] = le.fit_transform(sample_data['age'])
scaler = StandardScaler()
X_sample_scaled = scaler.fit_transform(sample_data[selected_columns])

#X_sample_scaled

pca = PCA(n_components=2)
X_pca_2d = pca.fit_transform(X_sample_scaled)
#X_pca_2d #keeping the first 2 clusters which explain the variance

linked = linkage(X_pca_2d, method='ward') #method: ward for distance calculation

#hierarchical clustering dendrogram
#plt.figure(figsize=(30, 21))
#dendrogram(linked)
#plt.title('Hierarchical Clustering Dendrogram', fontsize=30)
#plt.xlabel('Samples', fontsize=25)
#plt.ylabel('Distance', fontsize=25)
#plt.xticks(fontsize=20, rotation=90)

#locs, labels = plt.xticks()
#plt.xticks(locs[::10], fontsize=20, rotation=90)
#plt.yticks(fontsize=20)
#plt.show()

hierarchical = AgglomerativeClustering(n_clusters=6, metric='euclidean', linkage='ward')
hier_clusters = hierarchical.fit_predict(X_pca_2d)
#hier_clusters
#automatic data labeling with agglomerative

#plt.figure(figsize=(14,8))
#plt.scatter(X_pca_2d[:, 0], X_pca_2d[:, 1], c=hier_clusters, cmap='plasma')
#plt.title('Hierarchical Clustering with 2D PCA')
#plt.xlabel('First Principal Component')
#plt.ylabel('Second Principal Component')
#plt.grid(True)
#plt.tight_layout()
#plt.show()

similarity_matrix = cosine_similarity(X_pca_2d)
#similarity_matrix
similarity_df = pd.DataFrame(similarity_matrix, index=range(1000), columns=range(1000)) #creating a similarity matrix dataframe

sub_simi_df = similarity_df.iloc[:10, :10]
#creating a subset of similarity matrix so it can be shown in the heatmap without glitching
#print(sub_simi_df)

#plt.figure(figsize=(10, 8))
#sns.heatmap(sub_simi_df, cmap='coolwarm')
#plt.title('Cosine Similarity Matrix Heatmap')
#plt.xlabel('Sample Index')
#plt.ylabel('Sample Index')
#plt.show()

def get_recommendations(index, similarity_df, top_n=5):

    sim_scores = similarity_df[index].sort_values(ascending=False) #most similar points come first

    sim_scores = sim_scores.iloc[1:top_n+1] #excluding the 1st score which is 0


    similar_indices = sim_scores.index.tolist()

    return similar_indices

recommended_indices = get_recommendations(0, similarity_df, top_n=500)
#print(recommended_indices)

#print(f"Recommended records for record 0: {recommended_indices}")
#print("Details of recommended records:")
#print(X.iloc[recommended_indices])

X['cluster'] = kmeans.labels_


cluster_analysis = X.groupby('cluster').mean().round(3)


#print(cluster_analysis)

cluster_analysis['economy'] = data['economy']

cols = ['economy'] + [col for col in cluster_analysis.columns if col != 'economy']
cluster_analysis = cluster_analysis[cols] #reorder the columns so 'economy' is the first one

print(cluster_analysis)

#print(cols)



# Set the figure size for the subplots
plt.figure(figsize=(12, 6))

#first plot y=age
plt.subplot(1, 2, 1)  # 1 row, 2 columns, 1st subplot
sns.barplot(data=X, x='cluster', y='age', palette='dark')
plt.title('Average Income Quartile by Cluster')
plt.xlabel('Cluster')
plt.ylabel('Average Income Quartile')
plt.xticks(rotation=0)
plt.grid(axis='y')

#second plot y= medical worries
plt.subplot(1, 2, 2)  # 1 row, 2 columns, 2nd subplot
sns.barplot(data=X, x='cluster', y='fin44b', palette='dark')
plt.title('Financial Worries about Medical Bills by Cluster')
plt.xlabel('Cluster')
plt.ylabel('Financial Worries about Medical Bills')
plt.xticks(rotation=0)
plt.grid(axis='y')

plt.show()



with st.expander("Start", expanded=False):
    st.title('PCA: Explained Variance for Each Component')
    st.bar_chart(pca.explained_variance_ratio_)

    #st.title('2D PCA with KMeans Clusters')

    #scatter
    #colors = ['red', 'blue', 'green', 'purple', 'black', 'cyan']
    #plt.figure(figsize=(14, 8))
    #for i, color in zip(range(6), colors):
    #    plt.scatter(X_pca_2d[labels == i, 0], X_pca_2d[labels == i, 1], s=60, c=color, label=f'Cluster {i + 1}', alpha=0.6, edgecolors='w', linewidth=0.5)

    #plt.legend(fontsize=17)
    #plt.title('2D PCA with KMeans Clusters', fontsize=16)
    #plt.xlabel('First Principal Component', fontsize=14)
    #plt.ylabel('Second Principal Component', fontsize=14)
    #plt.xticks(fontsize=12)
    #plt.yticks(fontsize=12)
    #plt.grid(True)
    #plt.tight_layout()
    #st.pyplot(plt)

    st.title("HEATMAP") #Not fitted well to the screen on streamlit :(

    plt.figure(figsize=(10, 8))
    sns.heatmap(similarity_df, cmap='coolwarm')
    plt.title('Cosine Similarity Matrix Heatmap')
    plt.xlabel('Index')
    plt.ylabel('Index')
    plt.tight_layout()
    st.pyplot(plt)


    st.title("Cluster Analysis Table")
    st.table(cluster_analysis)

    st.title("Explanation of Cluster0 as an example:")
    st.write("""
    - **Age**: ~48
    - **inc_q** (income quartile): 3.7 (~4) belongs to the 20% of the middle class
    - **fin44a** (financially worried about old age): not so worried about financial status about old age (value: 2.8)
    - **fin44b** (financially worried about medical bills): not so worried about medical bills (value: 2.8)
    - **fin44c** (financially worried about bills): not worried at all about bills (value: 2.95)
    - **fin44d** (financially worried about education): not worried at all about educational expenses (value: 3.1)
    - **borrowed** (borrowed money in the past year): A value of 0.53 means that in that cluster there are the 53% of people who have borrowed
    - **saved** (saved money in the past year): A value of 0.8 means that in that cluster there are the 80% of people who have saved
    - **account_fin** (owns an account at a financial institution): A value of 0.99 means that in that cluster there are the 99% of people who own an account at a financial institution
    - **anydigpayment** (if the person made any digital payments): A value of 0.99 means that in that cluster there are the 99% of people who made any digital payments
             
    *We can see that the older people between 40 and 50 yrs old are not so worried or worried at all about medical costs than the youth in Afghanistan. In contrast with individuals between 30-40 in cluster4 are very worried about the medical expenses*""")

    st.title('2 Plots showing Average Income Quartiles and Medical Financial Worries based on the Age:')

    fig, axes = plt.subplots(1, 2, figsize=(12, 6))
        
    #1st plot
    sns.barplot(data=X, x='cluster', y='age', palette='dark', ax=axes[0])
    axes[0].set_title('Average Age by Cluster')
    axes[0].set_xlabel('Cluster')
    axes[0].set_ylabel('Average Age')
    axes[0].grid(axis='y')

    #2nd plot
    sns.barplot(data=X, x='cluster', y='fin44b', palette='dark', ax=axes[1])
    axes[1].set_title('Financial Worries about Medical Bills by Cluster')
    axes[1].set_xlabel('Cluster')
    axes[1].set_ylabel('Financial Worries about Medical Bills')
    axes[1].grid(axis='y')

    plt.tight_layout()
    st.pyplot(fig)