File size: 14,401 Bytes
60c56d7 e4599d1 60c56d7 e4599d1 6108abf 235075d 5e6062c e4599d1 60c56d7 e4599d1 60c56d7 2ae242d 60c56d7 e4599d1 60c56d7 e4599d1 6960c4e 60c56d7 e4599d1 bdef219 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 bdef219 60c56d7 e4599d1 60c56d7 e4599d1 bfba916 e4599d1 f1c1f42 60c56d7 e4599d1 2f136a8 60c56d7 e4599d1 60c56d7 e4599d1 6960c4e 60c56d7 2f136a8 6960c4e e4599d1 60c56d7 e4599d1 60c56d7 2ae242d e4599d1 2ae242d 7471c96 2ae242d e4599d1 2ae242d 60c56d7 e4599d1 60c56d7 2f136a8 60c56d7 e4599d1 60c56d7 2f136a8 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 2ae242d 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 60c56d7 e4599d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
"""
FastAPI application for FastAI GAN Image Colorization
with Firebase Authentication and Gradio UI
"""
import os
# Set environment variables BEFORE any imports
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["HF_HOME"] = "/tmp/hf_cache"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache"
os.environ["XDG_CACHE_HOME"] = "/tmp/hf_cache"
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib_config"
os.environ["GRADIO_TEMP_DIR"] = "/tmp/gradio"
import io
import uuid
import logging
from pathlib import Path
from typing import Optional
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Request
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
import firebase_admin
from firebase_admin import credentials, app_check, auth as firebase_auth
from PIL import Image
import torch
import uvicorn
import gradio as gr
# FastAI imports
from fastai.vision.all import *
from huggingface_hub import from_pretrained_fastai, hf_hub_download, list_repo_files
from app.config import settings
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Create writable directories
Path("/tmp/hf_cache").mkdir(parents=True, exist_ok=True)
Path("/tmp/matplotlib_config").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_uploads").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_results").mkdir(parents=True, exist_ok=True)
# Initialize FastAPI app
app = FastAPI(
title="FastAI Image Colorizer API",
description="Image colorization using FastAI GAN model with Firebase authentication",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize Firebase Admin SDK
firebase_cred_path = os.getenv("FIREBASE_CREDENTIALS_PATH", "/tmp/firebase-adminsdk.json")
if os.path.exists(firebase_cred_path):
try:
cred = credentials.Certificate(firebase_cred_path)
firebase_admin.initialize_app(cred)
logger.info("Firebase Admin SDK initialized")
except Exception as e:
logger.warning("Failed to initialize Firebase: %s", str(e))
try:
firebase_admin.initialize_app()
except:
pass
else:
logger.warning("Firebase credentials file not found. App Check will be disabled.")
try:
firebase_admin.initialize_app()
except:
pass
# Storage directories
UPLOAD_DIR = Path("/tmp/colorize_uploads")
RESULT_DIR = Path("/tmp/colorize_results")
# Mount static files
app.mount("/results", StaticFiles(directory=str(RESULT_DIR)), name="results")
app.mount("/uploads", StaticFiles(directory=str(UPLOAD_DIR)), name="uploads")
# Initialize FastAI model
learn = None
model_load_error: Optional[str] = None
@app.on_event("startup")
async def startup_event():
"""Load FastAI model on startup"""
global learn, model_load_error
try:
model_id = os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model")
logger.info("🔄 Loading FastAI GAN Colorization Model: %s", model_id)
# Try using from_pretrained_fastai first
try:
learn = from_pretrained_fastai(model_id)
logger.info("✅ Model loaded successfully via from_pretrained_fastai!")
model_load_error = None
except Exception as e1:
logger.warning("from_pretrained_fastai failed: %s. Trying manual download...", str(e1))
# Fallback: manually download and load the model file
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
# List repository files to find the actual model file
model_filenames = []
model_type = "fastai"
try:
repo_files = list_repo_files(repo_id=model_id, token=hf_token)
logger.info("Repository files: %s", repo_files)
pkl_files = [f for f in repo_files if f.endswith('.pkl')]
pt_files = [f for f in repo_files if f.endswith('.pt')]
if pkl_files:
model_filenames = pkl_files
logger.info("Found .pkl files in repository: %s", pkl_files)
model_type = "fastai"
elif pt_files:
model_filenames = pt_files
logger.info("Found .pt files in repository: %s", pt_files)
model_type = "pytorch"
else:
model_filenames = ["model.pkl", "export.pkl", "learner.pkl", "model_export.pkl", "generator.pt"]
model_type = "fastai"
except Exception as list_err:
logger.warning("Could not list repository files: %s. Trying common filenames...", str(list_err))
model_filenames = ["model.pkl", "export.pkl", "learner.pkl", "model_export.pkl", "generator.pt"]
model_type = "fastai"
# Try to download and load the model file
cache_dir = os.environ.get("HF_HOME", "/tmp/hf_cache")
model_path = None
for filename in model_filenames:
try:
model_path = hf_hub_download(
repo_id=model_id,
filename=filename,
cache_dir=cache_dir,
token=hf_token
)
logger.info("Found model file: %s", filename)
if filename.endswith('.pt'):
model_type = "pytorch"
elif filename.endswith('.pkl'):
model_type = "fastai"
break
except Exception as dl_err:
logger.debug("Failed to download %s: %s", filename, str(dl_err))
continue
if model_path and os.path.exists(model_path):
if model_type == "pytorch":
error_msg = (
f"Repository '{model_id}' contains a PyTorch model (.pt file), "
f"not a FastAI model. FastAI models must be .pkl files created with FastAI's export. "
f"Please use a FastAI-compatible colorization model, or switch to a different model backend."
)
logger.error(error_msg)
model_load_error = error_msg
raise RuntimeError(error_msg)
else:
logger.info("Loading FastAI model from: %s", model_path)
learn = load_learner(model_path)
logger.info("✅ Model loaded successfully from %s", model_path)
model_load_error = None
else:
error_msg = (
f"Could not find model file in repository '{model_id}'. "
f"Tried: {', '.join(model_filenames)}. "
f"Original error: {str(e1)}"
)
logger.error(error_msg)
model_load_error = error_msg
raise RuntimeError(error_msg)
except Exception as e:
error_msg = str(e)
if not model_load_error:
model_load_error = error_msg
logger.error("❌ Failed to load model: %s", error_msg)
# Don't raise - allow health check to work
@app.on_event("shutdown")
async def shutdown_event():
"""Cleanup on shutdown"""
global learn
if learn:
del learn
logger.info("Application shutdown")
def _extract_bearer_token(authorization_header: str | None) -> str | None:
if not authorization_header:
return None
parts = authorization_header.split(" ", 1)
if len(parts) == 2 and parts[0].lower() == "bearer":
return parts[1].strip()
return None
async def verify_request(request: Request):
"""
Verify Firebase authentication
Accept either:
- Firebase Auth id_token via Authorization: Bearer <id_token>
- Firebase App Check token via X-Firebase-AppCheck (when ENABLE_APP_CHECK=true)
"""
# If Firebase is not initialized or auth is explicitly disabled, allow
if not firebase_admin._apps or os.getenv("DISABLE_AUTH", "false").lower() == "true":
return True
# Try Firebase Auth id_token first if present
bearer = _extract_bearer_token(request.headers.get("Authorization"))
if bearer:
try:
decoded = firebase_auth.verify_id_token(bearer)
request.state.user = decoded
logger.info("Firebase Auth id_token verified for uid: %s", decoded.get("uid"))
return True
except Exception as e:
logger.warning("Auth token verification failed: %s", str(e))
# If App Check is enabled, require valid App Check token
if settings.ENABLE_APP_CHECK:
app_check_token = request.headers.get("X-Firebase-AppCheck")
if not app_check_token:
raise HTTPException(status_code=401, detail="Missing App Check token")
try:
app_check_claims = app_check.verify_token(app_check_token)
logger.info("App Check token verified for: %s", app_check_claims.get("app_id"))
return True
except Exception as e:
logger.warning("App Check token verification failed: %s", str(e))
raise HTTPException(status_code=401, detail="Invalid App Check token")
# Neither token required nor provided → allow (App Check disabled)
return True
@app.get("/api")
async def api_info():
"""API info endpoint"""
return {
"app": "FastAI Image Colorizer API",
"version": "1.0.0",
"health": "/health",
"colorize": "/colorize",
"gradio": "/"
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
response = {
"status": "healthy",
"model_loaded": learn is not None,
"model_id": os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model")
}
if model_load_error:
response["model_error"] = model_load_error
return response
def colorize_pil(image: Image.Image) -> Image.Image:
"""Run model prediction and return colorized image"""
if learn is None:
raise RuntimeError("Model not loaded")
if image.mode != "RGB":
image = image.convert("RGB")
pred = learn.predict(image)
# Handle different return types from FastAI
if isinstance(pred, (list, tuple)):
colorized = pred[0] if len(pred) > 0 else image
else:
colorized = pred
# Ensure we have a PIL Image
if not isinstance(colorized, Image.Image):
if isinstance(colorized, torch.Tensor):
# Convert tensor to PIL
if colorized.dim() == 4:
colorized = colorized[0]
if colorized.dim() == 3:
colorized = colorized.permute(1, 2, 0).cpu()
if colorized.dtype in (torch.float32, torch.float16):
colorized = torch.clamp(colorized, 0, 1)
colorized = (colorized * 255).byte()
colorized = Image.fromarray(colorized.numpy(), 'RGB')
else:
raise ValueError(f"Unexpected tensor shape: {colorized.shape}")
else:
raise ValueError(f"Unexpected prediction type: {type(colorized)}")
if colorized.mode != "RGB":
colorized = colorized.convert("RGB")
return colorized
@app.post("/colorize")
async def colorize_api(
file: UploadFile = File(...),
verified: bool = Depends(verify_request)
):
"""
Upload a black & white image -> returns colorized image.
Requires Firebase authentication unless DISABLE_AUTH=true
"""
if learn is None:
raise HTTPException(status_code=503, detail="Colorization model not loaded")
if not file.content_type or not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image")
try:
img_bytes = await file.read()
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
logger.info("Colorizing image...")
colorized = colorize_pil(image)
output_filename = f"{uuid.uuid4()}.png"
output_path = RESULT_DIR / output_filename
colorized.save(output_path, "PNG")
logger.info("Colorized image saved: %s", output_filename)
# Return the image file
return FileResponse(
output_path,
media_type="image/png",
filename=f"colorized_{output_filename}"
)
except Exception as e:
logger.error("Error colorizing image: %s", str(e))
raise HTTPException(status_code=500, detail=f"Error colorizing image: {str(e)}")
# ==========================================================
# Gradio Interface (for Space UI)
# ==========================================================
def gradio_colorize(image):
"""Gradio colorization function"""
if image is None:
return None
try:
if learn is None:
return None
return colorize_pil(image)
except Exception as e:
logger.error("Gradio colorization error: %s", str(e))
return None
title = "🎨 FastAI GAN Image Colorizer"
description = "Upload a black & white photo to generate a colorized version using the FastAI GAN model."
iface = gr.Interface(
fn=gradio_colorize,
inputs=gr.Image(type="pil", label="Upload B&W Image"),
outputs=gr.Image(type="pil", label="Colorized Image"),
title=title,
description=description,
)
# Mount Gradio app at root (this will be the Space UI)
# Note: This will override the root endpoint, so use /api for API info
app = gr.mount_gradio_app(app, iface, path="/")
# ==========================================================
# Run Server
# ==========================================================
if __name__ == "__main__":
port = int(os.getenv("PORT", "7860"))
uvicorn.run(app, host="0.0.0.0", port=port)
|