File size: 14,401 Bytes
60c56d7
e4599d1
 
60c56d7
 
e4599d1
6108abf
 
 
 
 
 
 
235075d
5e6062c
e4599d1
60c56d7
 
 
 
e4599d1
 
60c56d7
 
 
 
2ae242d
60c56d7
e4599d1
 
 
60c56d7
e4599d1
 
6960c4e
60c56d7
e4599d1
bdef219
60c56d7
 
 
 
 
 
 
e4599d1
 
 
 
 
 
60c56d7
 
e4599d1
 
60c56d7
 
 
 
 
 
e4599d1
60c56d7
 
 
 
 
 
bdef219
60c56d7
 
 
 
 
 
 
e4599d1
 
 
 
60c56d7
 
 
 
 
 
 
e4599d1
 
 
bfba916
e4599d1
f1c1f42
 
60c56d7
e4599d1
 
2f136a8
60c56d7
 
 
e4599d1
 
60c56d7
e4599d1
 
6960c4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c56d7
2f136a8
6960c4e
 
e4599d1
 
60c56d7
 
 
 
e4599d1
 
 
60c56d7
 
2ae242d
 
 
 
 
 
 
 
 
 
e4599d1
2ae242d
 
 
 
7471c96
 
 
 
2ae242d
 
 
 
 
e4599d1
2ae242d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c56d7
e4599d1
 
 
 
 
 
 
 
 
 
 
60c56d7
 
 
2f136a8
60c56d7
e4599d1
 
60c56d7
2f136a8
 
 
60c56d7
e4599d1
 
 
 
 
 
 
 
 
 
 
 
60c56d7
e4599d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c56d7
e4599d1
 
 
 
60c56d7
 
e4599d1
60c56d7
2ae242d
60c56d7
 
e4599d1
 
60c56d7
e4599d1
60c56d7
 
 
 
 
 
e4599d1
 
60c56d7
 
e4599d1
60c56d7
e4599d1
 
 
60c56d7
e4599d1
60c56d7
e4599d1
 
 
 
 
 
60c56d7
 
 
 
e4599d1
 
 
 
 
 
 
 
 
 
 
 
 
 
60c56d7
e4599d1
 
60c56d7
e4599d1
 
 
 
 
 
 
60c56d7
e4599d1
 
 
 
 
 
 
60c56d7
 
 
e4599d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""
FastAPI application for FastAI GAN Image Colorization
with Firebase Authentication and Gradio UI
"""
import os
# Set environment variables BEFORE any imports
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["HF_HOME"] = "/tmp/hf_cache"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache"
os.environ["XDG_CACHE_HOME"] = "/tmp/hf_cache"
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib_config"
os.environ["GRADIO_TEMP_DIR"] = "/tmp/gradio"

import io
import uuid
import logging
from pathlib import Path
from typing import Optional

from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Request
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
import firebase_admin
from firebase_admin import credentials, app_check, auth as firebase_auth
from PIL import Image
import torch
import uvicorn
import gradio as gr

# FastAI imports
from fastai.vision.all import *
from huggingface_hub import from_pretrained_fastai, hf_hub_download, list_repo_files

from app.config import settings

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Create writable directories
Path("/tmp/hf_cache").mkdir(parents=True, exist_ok=True)
Path("/tmp/matplotlib_config").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_uploads").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_results").mkdir(parents=True, exist_ok=True)

# Initialize FastAPI app
app = FastAPI(
    title="FastAI Image Colorizer API",
    description="Image colorization using FastAI GAN model with Firebase authentication",
    version="1.0.0"
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize Firebase Admin SDK
firebase_cred_path = os.getenv("FIREBASE_CREDENTIALS_PATH", "/tmp/firebase-adminsdk.json")
if os.path.exists(firebase_cred_path):
    try:
        cred = credentials.Certificate(firebase_cred_path)
        firebase_admin.initialize_app(cred)
        logger.info("Firebase Admin SDK initialized")
    except Exception as e:
        logger.warning("Failed to initialize Firebase: %s", str(e))
        try:
            firebase_admin.initialize_app()
        except:
            pass
else:
    logger.warning("Firebase credentials file not found. App Check will be disabled.")
    try:
        firebase_admin.initialize_app()
    except:
        pass

# Storage directories
UPLOAD_DIR = Path("/tmp/colorize_uploads")
RESULT_DIR = Path("/tmp/colorize_results")

# Mount static files
app.mount("/results", StaticFiles(directory=str(RESULT_DIR)), name="results")
app.mount("/uploads", StaticFiles(directory=str(UPLOAD_DIR)), name="uploads")

# Initialize FastAI model
learn = None
model_load_error: Optional[str] = None

@app.on_event("startup")
async def startup_event():
    """Load FastAI model on startup"""
    global learn, model_load_error
    try:
        model_id = os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model")
        logger.info("🔄 Loading FastAI GAN Colorization Model: %s", model_id)
        
        # Try using from_pretrained_fastai first
        try:
            learn = from_pretrained_fastai(model_id)
            logger.info("✅ Model loaded successfully via from_pretrained_fastai!")
            model_load_error = None
        except Exception as e1:
            logger.warning("from_pretrained_fastai failed: %s. Trying manual download...", str(e1))
            # Fallback: manually download and load the model file
            hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
            
            # List repository files to find the actual model file
            model_filenames = []
            model_type = "fastai"
            
            try:
                repo_files = list_repo_files(repo_id=model_id, token=hf_token)
                logger.info("Repository files: %s", repo_files)
                pkl_files = [f for f in repo_files if f.endswith('.pkl')]
                pt_files = [f for f in repo_files if f.endswith('.pt')]
                
                if pkl_files:
                    model_filenames = pkl_files
                    logger.info("Found .pkl files in repository: %s", pkl_files)
                    model_type = "fastai"
                elif pt_files:
                    model_filenames = pt_files
                    logger.info("Found .pt files in repository: %s", pt_files)
                    model_type = "pytorch"
                else:
                    model_filenames = ["model.pkl", "export.pkl", "learner.pkl", "model_export.pkl", "generator.pt"]
                    model_type = "fastai"
            except Exception as list_err:
                logger.warning("Could not list repository files: %s. Trying common filenames...", str(list_err))
                model_filenames = ["model.pkl", "export.pkl", "learner.pkl", "model_export.pkl", "generator.pt"]
                model_type = "fastai"
            
            # Try to download and load the model file
            cache_dir = os.environ.get("HF_HOME", "/tmp/hf_cache")
            model_path = None
            for filename in model_filenames:
                try:
                    model_path = hf_hub_download(
                        repo_id=model_id,
                        filename=filename,
                        cache_dir=cache_dir,
                        token=hf_token
                    )
                    logger.info("Found model file: %s", filename)
                    if filename.endswith('.pt'):
                        model_type = "pytorch"
                    elif filename.endswith('.pkl'):
                        model_type = "fastai"
                    break
                except Exception as dl_err:
                    logger.debug("Failed to download %s: %s", filename, str(dl_err))
                    continue
            
            if model_path and os.path.exists(model_path):
                if model_type == "pytorch":
                    error_msg = (
                        f"Repository '{model_id}' contains a PyTorch model (.pt file), "
                        f"not a FastAI model. FastAI models must be .pkl files created with FastAI's export. "
                        f"Please use a FastAI-compatible colorization model, or switch to a different model backend."
                    )
                    logger.error(error_msg)
                    model_load_error = error_msg
                    raise RuntimeError(error_msg)
                else:
                    logger.info("Loading FastAI model from: %s", model_path)
                    learn = load_learner(model_path)
                    logger.info("✅ Model loaded successfully from %s", model_path)
                    model_load_error = None
            else:
                error_msg = (
                    f"Could not find model file in repository '{model_id}'. "
                    f"Tried: {', '.join(model_filenames)}. "
                    f"Original error: {str(e1)}"
                )
                logger.error(error_msg)
                model_load_error = error_msg
                raise RuntimeError(error_msg)
                
    except Exception as e:
        error_msg = str(e)
        if not model_load_error:
            model_load_error = error_msg
        logger.error("❌ Failed to load model: %s", error_msg)
        # Don't raise - allow health check to work

@app.on_event("shutdown")
async def shutdown_event():
    """Cleanup on shutdown"""
    global learn
    if learn:
        del learn
    logger.info("Application shutdown")

def _extract_bearer_token(authorization_header: str | None) -> str | None:
    if not authorization_header:
        return None
    parts = authorization_header.split(" ", 1)
    if len(parts) == 2 and parts[0].lower() == "bearer":
        return parts[1].strip()
    return None

async def verify_request(request: Request):
    """
    Verify Firebase authentication
    Accept either:
      - Firebase Auth id_token via Authorization: Bearer <id_token>
      - Firebase App Check token via X-Firebase-AppCheck (when ENABLE_APP_CHECK=true)
    """
    # If Firebase is not initialized or auth is explicitly disabled, allow
    if not firebase_admin._apps or os.getenv("DISABLE_AUTH", "false").lower() == "true":
        return True

    # Try Firebase Auth id_token first if present
    bearer = _extract_bearer_token(request.headers.get("Authorization"))
    if bearer:
        try:
            decoded = firebase_auth.verify_id_token(bearer)
            request.state.user = decoded
            logger.info("Firebase Auth id_token verified for uid: %s", decoded.get("uid"))
            return True
        except Exception as e:
            logger.warning("Auth token verification failed: %s", str(e))

    # If App Check is enabled, require valid App Check token
    if settings.ENABLE_APP_CHECK:
        app_check_token = request.headers.get("X-Firebase-AppCheck")
        if not app_check_token:
            raise HTTPException(status_code=401, detail="Missing App Check token")
        try:
            app_check_claims = app_check.verify_token(app_check_token)
            logger.info("App Check token verified for: %s", app_check_claims.get("app_id"))
            return True
        except Exception as e:
            logger.warning("App Check token verification failed: %s", str(e))
            raise HTTPException(status_code=401, detail="Invalid App Check token")

    # Neither token required nor provided → allow (App Check disabled)
    return True

@app.get("/api")
async def api_info():
    """API info endpoint"""
    return {
        "app": "FastAI Image Colorizer API",
        "version": "1.0.0",
        "health": "/health",
        "colorize": "/colorize",
        "gradio": "/"
    }

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    response = {
        "status": "healthy",
        "model_loaded": learn is not None,
        "model_id": os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model")
    }
    if model_load_error:
        response["model_error"] = model_load_error
    return response

def colorize_pil(image: Image.Image) -> Image.Image:
    """Run model prediction and return colorized image"""
    if learn is None:
        raise RuntimeError("Model not loaded")
    if image.mode != "RGB":
        image = image.convert("RGB")
    pred = learn.predict(image)
    # Handle different return types from FastAI
    if isinstance(pred, (list, tuple)):
        colorized = pred[0] if len(pred) > 0 else image
    else:
        colorized = pred
    
    # Ensure we have a PIL Image
    if not isinstance(colorized, Image.Image):
        if isinstance(colorized, torch.Tensor):
            # Convert tensor to PIL
            if colorized.dim() == 4:
                colorized = colorized[0]
            if colorized.dim() == 3:
                colorized = colorized.permute(1, 2, 0).cpu()
                if colorized.dtype in (torch.float32, torch.float16):
                    colorized = torch.clamp(colorized, 0, 1)
                    colorized = (colorized * 255).byte()
                colorized = Image.fromarray(colorized.numpy(), 'RGB')
            else:
                raise ValueError(f"Unexpected tensor shape: {colorized.shape}")
        else:
            raise ValueError(f"Unexpected prediction type: {type(colorized)}")
    
    if colorized.mode != "RGB":
        colorized = colorized.convert("RGB")
    
    return colorized

@app.post("/colorize")
async def colorize_api(
    file: UploadFile = File(...),
    verified: bool = Depends(verify_request)
):
    """
    Upload a black & white image -> returns colorized image.
    Requires Firebase authentication unless DISABLE_AUTH=true
    """
    if learn is None:
        raise HTTPException(status_code=503, detail="Colorization model not loaded")
    
    if not file.content_type or not file.content_type.startswith("image/"):
        raise HTTPException(status_code=400, detail="File must be an image")
    
    try:
        img_bytes = await file.read()
        image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
        
        logger.info("Colorizing image...")
        colorized = colorize_pil(image)
        
        output_filename = f"{uuid.uuid4()}.png"
        output_path = RESULT_DIR / output_filename
        colorized.save(output_path, "PNG")
        
        logger.info("Colorized image saved: %s", output_filename)
        
        # Return the image file
        return FileResponse(
            output_path,
            media_type="image/png",
            filename=f"colorized_{output_filename}"
        )
    except Exception as e:
        logger.error("Error colorizing image: %s", str(e))
        raise HTTPException(status_code=500, detail=f"Error colorizing image: {str(e)}")

# ==========================================================
# Gradio Interface (for Space UI)
# ==========================================================
def gradio_colorize(image):
    """Gradio colorization function"""
    if image is None:
        return None
    try:
        if learn is None:
            return None
        return colorize_pil(image)
    except Exception as e:
        logger.error("Gradio colorization error: %s", str(e))
        return None

title = "🎨 FastAI GAN Image Colorizer"
description = "Upload a black & white photo to generate a colorized version using the FastAI GAN model."

iface = gr.Interface(
    fn=gradio_colorize,
    inputs=gr.Image(type="pil", label="Upload B&W Image"),
    outputs=gr.Image(type="pil", label="Colorized Image"),
    title=title,
    description=description,
)

# Mount Gradio app at root (this will be the Space UI)
# Note: This will override the root endpoint, so use /api for API info
app = gr.mount_gradio_app(app, iface, path="/")

# ==========================================================
# Run Server
# ==========================================================
if __name__ == "__main__":
    port = int(os.getenv("PORT", "7860"))
    uvicorn.run(app, host="0.0.0.0", port=port)