File size: 28,374 Bytes
779884f ae9bbd0 779884f c85fec3 779884f c85fec3 779884f ae9bbd0 779884f a0088ec 779884f a0088ec 779884f ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 779884f 807fb92 ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 779884f c85fec3 779884f a0088ec 779884f a0088ec 779884f a0088ec 779884f a0088ec 779884f a0088ec 779884f c85fec3 779884f c85fec3 a0088ec c85fec3 779884f ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 779884f ae9bbd0 807fb92 ae9bbd0 807fb92 ae9bbd0 779884f a0088ec 779884f ae9bbd0 779884f a0088ec 779884f a0088ec 779884f ae9bbd0 779884f ae9bbd0 779884f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
"""
FastAPI application for Text-Guided Image Colorization using Hugging Face Inference API
Uses fal-ai provider for memory-efficient inference
"""
import os
import io
import uuid
import logging
from pathlib import Path
from typing import Optional, Tuple
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Request, Body
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
import firebase_admin
from firebase_admin import credentials, app_check, auth as firebase_auth
from PIL import Image
import uvicorn
import gradio as gr
import httpx
from pydantic import BaseModel, EmailStr
# Hugging Face Inference API
from huggingface_hub import InferenceClient
from app.config import settings
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Create writable directories
Path("/tmp/hf_cache").mkdir(parents=True, exist_ok=True)
Path("/tmp/matplotlib_config").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_uploads").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_results").mkdir(parents=True, exist_ok=True)
# Initialize FastAPI app
app = FastAPI(
title="Text-Guided Image Colorization API",
description="Image colorization using SDXL + ControlNet with automatic captioning",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize Firebase Admin SDK
# Try multiple possible paths for Firebase credentials
firebase_cred_paths = [
os.getenv("FIREBASE_CREDENTIALS_PATH"),
"/tmp/firebase-adminsdk.json",
"/data/firebase-adminsdk.json",
"colorize-662df-firebase-adminsdk-fbsvc-bfd21c77c6.json",
os.path.join(os.path.dirname(__file__), "..", "colorize-662df-firebase-adminsdk-fbsvc-bfd21c77c6.json"),
]
firebase_initialized = False
for cred_path in firebase_cred_paths:
if not cred_path:
continue
cred_path = os.path.abspath(cred_path)
if os.path.exists(cred_path):
try:
cred = credentials.Certificate(cred_path)
firebase_admin.initialize_app(cred)
logger.info("Firebase Admin SDK initialized from: %s", cred_path)
firebase_initialized = True
break
except Exception as e:
logger.warning("Failed to initialize Firebase from %s: %s", cred_path, str(e))
continue
# Also try loading from environment variable (for Hugging Face Spaces)
if not firebase_initialized:
firebase_json = os.getenv("FIREBASE_CREDENTIALS")
if firebase_json:
try:
import json
firebase_dict = json.loads(firebase_json)
cred = credentials.Certificate(firebase_dict)
firebase_admin.initialize_app(cred)
logger.info("Firebase Admin SDK initialized from environment variable")
firebase_initialized = True
except Exception as e:
logger.warning("Failed to initialize Firebase from environment: %s", str(e))
if not firebase_initialized:
logger.warning("Firebase credentials file not found. App Check will be disabled.")
try:
firebase_admin.initialize_app()
except:
pass
# Storage directories
UPLOAD_DIR = Path("/tmp/colorize_uploads")
RESULT_DIR = Path("/tmp/colorize_results")
# Mount static files
app.mount("/results", StaticFiles(directory=str(RESULT_DIR)), name="results")
app.mount("/uploads", StaticFiles(directory=str(UPLOAD_DIR)), name="uploads")
# Global Inference API client
inference_client = None
model_load_error: Optional[str] = None
# ========== Utility Functions ==========
def apply_color(image: Image.Image, color_map: Image.Image) -> Image.Image:
"""Apply color from color_map to image using LAB color space."""
# Convert to LAB color space
image_lab = image.convert('LAB')
color_map_lab = color_map.convert('LAB')
# Extract and merge LAB channels
l, _, _ = image_lab.split()
_, a_map, b_map = color_map_lab.split()
merged_lab = Image.merge('LAB', (l, a_map, b_map))
return merged_lab.convert('RGB')
def remove_unlikely_words(prompt: str) -> str:
"""Removes predefined unlikely phrases from prompt text."""
unlikely_words = []
a1 = [f'{i}s' for i in range(1900, 2000)]
a2 = [f'{i}' for i in range(1900, 2000)]
a3 = [f'year {i}' for i in range(1900, 2000)]
a4 = [f'circa {i}' for i in range(1900, 2000)]
b1 = [f"{y[0]} {y[1]} {y[2]} {y[3]} s" for y in a1]
b2 = [f"{y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
b3 = [f"year {y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
b4 = [f"circa {y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
manual = [
"black and white,", "black and white", "black & white,", "black & white", "circa",
"balck and white,", "monochrome,", "black-and-white,", "black-and-white photography,",
"black - and - white photography,", "monochrome bw,", "black white,", "black an white,",
"grainy footage,", "grainy footage", "grainy photo,", "grainy photo", "b&w photo",
"back and white", "back and white,", "monochrome contrast", "monochrome", "grainy",
"grainy photograph,", "grainy photograph", "low contrast,", "low contrast", "b & w",
"grainy black-and-white photo,", "bw", "bw,", "grainy black-and-white photo",
"b & w,", "b&w,", "b&w!,", "b&w", "black - and - white,", "bw photo,", "grainy photo,",
"black-and-white photo,", "black-and-white photo", "black - and - white photography",
"b&w photo,", "monochromatic photo,", "grainy monochrome photo,", "monochromatic",
"blurry photo,", "blurry,", "blurry photography,", "monochromatic photo",
"black - and - white photograph,", "black - and - white photograph", "black on white,",
"black on white", "black-and-white", "historical image,", "historical picture,",
"historical photo,", "historical photograph,", "archival photo,", "taken in the early",
"taken in the late", "taken in the", "historic photograph,", "restored,", "restored",
"historical photo", "historical setting,",
"historic photo,", "historic", "desaturated!!,", "desaturated!,", "desaturated,", "desaturated",
"taken in", "shot on leica", "shot on leica sl2", "sl2",
"taken with a leica camera", "leica sl2", "leica", "setting",
"overcast day", "overcast weather", "slight overcast", "overcast",
"picture taken in", "photo taken in",
", photo", ", photo", ", photo", ", photo", ", photograph",
",,", ",,,", ",,,,", " ,", " ,", " ,", " ,",
]
unlikely_words.extend(a1 + a2 + a3 + a4 + b1 + b2 + b3 + b4 + manual)
for word in unlikely_words:
prompt = prompt.replace(word, "")
return prompt
# ========== Model Loading ==========
@app.on_event("startup")
async def startup_event():
"""Initialize Hugging Face Inference API client"""
global inference_client, model_load_error
try:
logger.info("🔄 Initializing Hugging Face Inference API client...")
# Get HF token from environment or settings
hf_token = os.getenv("HF_TOKEN") or settings.HF_TOKEN
if not hf_token:
raise ValueError("HF_TOKEN environment variable is required for Inference API")
# Initialize InferenceClient with fal-ai provider
inference_client = InferenceClient(
provider="fal-ai",
api_key=hf_token,
)
logger.info("✅ Inference API client initialized successfully!")
model_load_error = None
except Exception as e:
error_msg = str(e)
logger.error(f"❌ Failed to initialize Inference API client: {error_msg}")
model_load_error = error_msg
# Don't raise - allow health check to work
@app.on_event("shutdown")
async def shutdown_event():
"""Cleanup on shutdown"""
global inference_client
if inference_client:
inference_client = None
logger.info("Application shutdown")
# ========== Authentication Models ==========
class RegisterRequest(BaseModel):
email: EmailStr
password: str
display_name: Optional[str] = None
class LoginRequest(BaseModel):
email: EmailStr
password: str
class TokenResponse(BaseModel):
id_token: str
refresh_token: Optional[str] = None
expires_in: int
token_type: str = "Bearer"
user: dict
# ========== Authentication ==========
def _extract_bearer_token(authorization_header: str | None) -> str | None:
if not authorization_header:
return None
parts = authorization_header.split(" ", 1)
if len(parts) == 2 and parts[0].lower() == "bearer":
return parts[1].strip()
return None
async def verify_request(request: Request):
"""
Verify Firebase authentication.
Priority:
1. Firebase App Check token (X-Firebase-AppCheck header) - Primary method per documentation
2. Firebase Auth ID token (Authorization: Bearer header) - Fallback for auth endpoints
"""
if not firebase_admin._apps or os.getenv("DISABLE_AUTH", "false").lower() == "true":
return True
# Primary: Check Firebase App Check token (X-Firebase-AppCheck header)
app_check_token = request.headers.get("X-Firebase-AppCheck")
if app_check_token:
try:
app_check_claims = app_check.verify_token(app_check_token)
logger.info("App Check token verified for: %s", app_check_claims.get("app_id"))
return True
except Exception as e:
logger.warning("App Check token verification failed: %s", str(e))
if settings.ENABLE_APP_CHECK:
raise HTTPException(status_code=401, detail="Invalid App Check token")
# Secondary: Check Firebase Auth ID token (Authorization: Bearer header)
# This is for /auth/* endpoints that use email/password login
bearer = _extract_bearer_token(request.headers.get("Authorization"))
if bearer:
try:
decoded = firebase_auth.verify_id_token(bearer)
request.state.user = decoded
logger.info("Firebase Auth id_token verified for uid: %s", decoded.get("uid"))
return True
except Exception as e:
logger.warning("Auth token verification failed: %s", str(e))
# If App Check is enabled and no valid token provided, require it
if settings.ENABLE_APP_CHECK:
if not app_check_token:
raise HTTPException(status_code=401, detail="Missing App Check token")
raise HTTPException(status_code=401, detail="Invalid App Check token")
# If auth is disabled, allow access
return True
# ========== Auth Endpoints ==========
@app.post("/auth/register", response_model=TokenResponse)
async def register_user(user_data: RegisterRequest):
"""
Register a new user with email and password.
Returns Firebase ID token for immediate use.
"""
if not firebase_admin._apps:
raise HTTPException(status_code=503, detail="Firebase not initialized")
try:
# Create user using Firebase Admin SDK
user_record = firebase_auth.create_user(
email=user_data.email,
password=user_data.password,
display_name=user_data.display_name,
email_verified=False
)
# Generate custom token that client can exchange for ID token
custom_token = firebase_auth.create_custom_token(user_record.uid)
logger.info("User registered: %s (uid: %s)", user_data.email, user_record.uid)
return TokenResponse(
id_token=custom_token.decode('utf-8'), # Custom token (client should exchange)
token_type="Bearer",
expires_in=3600,
user={
"uid": user_record.uid,
"email": user_record.email,
"display_name": user_record.display_name,
"email_verified": user_record.email_verified
}
)
except firebase_auth.EmailAlreadyExistsError:
raise HTTPException(status_code=400, detail="Email already registered")
except ValueError as e:
raise HTTPException(status_code=400, detail=f"Invalid input: {str(e)}")
except Exception as e:
logger.error("Registration error: %s", str(e))
raise HTTPException(status_code=500, detail=f"Registration failed: {str(e)}")
@app.post("/auth/login", response_model=TokenResponse)
async def login_user(credentials: LoginRequest):
"""
Login with email and password.
Uses Firebase REST API to authenticate and get ID token.
"""
if not firebase_admin._apps:
raise HTTPException(status_code=503, detail="Firebase not initialized")
# Firebase REST API endpoint for email/password authentication
firebase_api_key = os.getenv("FIREBASE_API_KEY") or settings.FIREBASE_API_KEY
if not firebase_api_key:
# Fallback: verify user exists and return custom token
try:
user_record = firebase_auth.get_user_by_email(credentials.email)
custom_token = firebase_auth.create_custom_token(user_record.uid)
logger.info("User login: %s (uid: %s)", credentials.email, user_record.uid)
return TokenResponse(
id_token=custom_token.decode('utf-8'),
token_type="Bearer",
expires_in=3600,
user={
"uid": user_record.uid,
"email": user_record.email,
"display_name": user_record.display_name,
"email_verified": user_record.email_verified
}
)
except firebase_auth.UserNotFoundError:
raise HTTPException(status_code=401, detail="Invalid email or password")
except Exception as e:
logger.error("Login error: %s", str(e))
raise HTTPException(status_code=500, detail=f"Login failed: {str(e)}")
# Use Firebase REST API for proper authentication
try:
async with httpx.AsyncClient() as client:
response = await client.post(
f"https://identitytoolkit.googleapis.com/v1/accounts:signInWithPassword?key={firebase_api_key}",
json={
"email": credentials.email,
"password": credentials.password,
"returnSecureToken": True
}
)
if response.status_code != 200:
error_data = response.json()
error_msg = error_data.get("error", {}).get("message", "Authentication failed")
raise HTTPException(status_code=401, detail=error_msg)
data = response.json()
logger.info("User login successful: %s", credentials.email)
# Get user details from Admin SDK
user_record = firebase_auth.get_user(data["localId"])
return TokenResponse(
id_token=data["idToken"],
refresh_token=data.get("refreshToken"),
expires_in=int(data.get("expiresIn", 3600)),
token_type="Bearer",
user={
"uid": user_record.uid,
"email": user_record.email,
"display_name": user_record.display_name,
"email_verified": user_record.email_verified
}
)
except httpx.HTTPError as e:
logger.error("HTTP error during login: %s", str(e))
raise HTTPException(status_code=500, detail="Authentication service unavailable")
except Exception as e:
logger.error("Login error: %s", str(e))
raise HTTPException(status_code=500, detail=f"Login failed: {str(e)}")
@app.get("/auth/me")
async def get_current_user(request: Request, verified: bool = Depends(verify_request)):
"""Get current authenticated user information"""
if not firebase_admin._apps:
raise HTTPException(status_code=503, detail="Firebase not initialized")
# Get user from request state (set by verify_request)
if hasattr(request, 'state') and hasattr(request.state, 'user'):
user_data = request.state.user
uid = user_data.get("uid")
try:
user_record = firebase_auth.get_user(uid)
return {
"uid": user_record.uid,
"email": user_record.email,
"display_name": user_record.display_name,
"email_verified": user_record.email_verified,
"created_at": user_record.user_metadata.creation_timestamp,
}
except Exception as e:
logger.error("Error getting user: %s", str(e))
raise HTTPException(status_code=404, detail="User not found")
raise HTTPException(status_code=401, detail="Not authenticated")
@app.post("/auth/refresh")
async def refresh_token(refresh_token: str = Body(..., embed=True)):
"""Refresh Firebase ID token using refresh token"""
firebase_api_key = os.getenv("FIREBASE_API_KEY") or settings.FIREBASE_API_KEY
if not firebase_api_key:
raise HTTPException(status_code=503, detail="Firebase API key not configured")
try:
async with httpx.AsyncClient() as client:
response = await client.post(
f"https://securetoken.googleapis.com/v1/token?key={firebase_api_key}",
json={
"grant_type": "refresh_token",
"refresh_token": refresh_token
}
)
if response.status_code != 200:
error_data = response.json()
error_msg = error_data.get("error", {}).get("message", "Token refresh failed")
raise HTTPException(status_code=401, detail=error_msg)
data = response.json()
return {
"id_token": data["id_token"],
"refresh_token": data.get("refresh_token"),
"expires_in": int(data.get("expires_in", 3600)),
"token_type": "Bearer"
}
except httpx.HTTPError as e:
logger.error("HTTP error during token refresh: %s", str(e))
raise HTTPException(status_code=500, detail="Token refresh service unavailable")
except Exception as e:
logger.error("Token refresh error: %s", str(e))
raise HTTPException(status_code=500, detail=f"Token refresh failed: {str(e)}")
# ========== API Endpoints ==========
@app.get("/api")
async def api_info():
"""API info endpoint"""
return {
"app": "Text-Guided Image Colorization API",
"version": "1.0.0",
"endpoints": {
"health": "/health",
"upload": "/upload",
"colorize": "/colorize",
"download": "/download/{file_id}",
"results": "/results/{filename}",
"uploads": "/uploads/{filename}",
"auth": {
"register": "/auth/register",
"login": "/auth/login",
"me": "/auth/me",
"refresh": "/auth/refresh"
},
"gradio": "/"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
response = {
"status": "healthy",
"model_loaded": inference_client is not None,
"model_type": "hf_inference_api",
"provider": "fal-ai"
}
if model_load_error:
response["model_error"] = model_load_error
return response
def colorize_image_sdxl(
image: Image.Image,
positive_prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
seed: int = 123,
num_inference_steps: int = 8
) -> Tuple[Image.Image, str]:
"""
Colorize a grayscale or low-color image using Hugging Face Inference API.
Args:
image: PIL Image to colorize
positive_prompt: Additional descriptive text to enhance the caption
negative_prompt: Words or phrases to avoid during generation
seed: Random seed for reproducible generation
num_inference_steps: Number of inference steps
Returns:
Tuple of (colorized PIL Image, caption string)
"""
if inference_client is None:
raise RuntimeError("Inference API client not initialized")
original_size = image.size
# Resize to 512x512 for inference (FLUX models work well at this size)
control_image = image.convert("RGB").resize((512, 512))
# Convert image to bytes for API
img_bytes = io.BytesIO()
control_image.save(img_bytes, format="PNG")
img_bytes.seek(0)
input_image = img_bytes.read()
# Construct prompt
base_prompt = positive_prompt or "colorize this image with vibrant natural colors, high quality"
if negative_prompt:
# Note: Some models may not support negative_prompt directly
final_prompt = f"{base_prompt}. Avoid: {negative_prompt}"
else:
final_prompt = base_prompt
# Use Inference API for image-to-image generation
model_name = settings.INFERENCE_MODEL
logger.info(f"Calling Inference API with model {model_name}, prompt: {final_prompt}")
try:
result_image = inference_client.image_to_image(
input_image,
prompt=final_prompt,
model=model_name,
)
# Resize back to original size
if isinstance(result_image, Image.Image):
colorized = result_image.resize(original_size)
else:
# If it's bytes, convert to PIL Image
colorized = Image.open(io.BytesIO(result_image)).resize(original_size)
# Generate a simple caption from the prompt
caption = final_prompt[:100] # Truncate for display
return colorized, caption
except Exception as e:
logger.error(f"Inference API error: {e}")
raise RuntimeError(f"Failed to colorize image: {str(e)}")
@app.post("/upload")
async def upload_image(
file: UploadFile = File(...),
verified: bool = Depends(verify_request)
):
"""
Upload an image and get the uploaded image URL.
Requires Firebase App Check authentication.
"""
if not file.content_type or not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image")
try:
# Generate unique filename
file_extension = file.filename.split('.')[-1] if file.filename else 'jpg'
image_id = f"{uuid.uuid4()}.{file_extension}"
file_path = UPLOAD_DIR / image_id
# Save uploaded file
img_bytes = await file.read()
with open(file_path, "wb") as f:
f.write(img_bytes)
logger.info("Image uploaded: %s", image_id)
# Get base URL from settings or environment
base_url = os.getenv("BASE_URL", settings.BASE_URL)
if not base_url or base_url == "http://localhost:8000":
# Try to get from request
base_url = "https://logicgoinfotechspaces-text-guided-image-colorization.hf.space"
return JSONResponse({
"success": True,
"image_id": image_id.replace(f".{file_extension}", ""),
"image_url": f"{base_url}/uploads/{image_id}",
"filename": image_id
})
except Exception as e:
logger.error("Error uploading image: %s", str(e))
raise HTTPException(status_code=500, detail=f"Error uploading image: {str(e)}")
@app.post("/colorize")
async def colorize_api(
file: UploadFile = File(...),
positive_prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
seed: int = 123,
num_inference_steps: int = 8,
verified: bool = Depends(verify_request)
):
"""
Upload a grayscale image -> returns colorized image.
Uses SDXL + ControlNet with automatic captioning.
"""
if inference_client is None:
raise HTTPException(status_code=503, detail="Inference API client not initialized")
if not file.content_type or not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image")
try:
img_bytes = await file.read()
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
logger.info("Colorizing image with SDXL + ControlNet...")
colorized, caption = colorize_image_sdxl(
image,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
seed=seed,
num_inference_steps=num_inference_steps
)
output_filename = f"{uuid.uuid4()}.png"
output_path = RESULT_DIR / output_filename
colorized.save(output_path, "PNG")
logger.info("Colorized image saved: %s", output_filename)
# Get base URL from settings or environment
base_url = os.getenv("BASE_URL", settings.BASE_URL)
if not base_url or base_url == "http://localhost:8000":
base_url = "https://logicgoinfotechspaces-text-guided-image-colorization.hf.space"
result_id = output_filename.replace(".png", "")
return JSONResponse({
"success": True,
"result_id": result_id,
"download_url": f"{base_url}/results/{output_filename}",
"api_download_url": f"{base_url}/download/{result_id}",
"filename": output_filename,
"caption": caption
})
except Exception as e:
logger.error("Error colorizing image: %s", str(e))
raise HTTPException(status_code=500, detail=f"Error colorizing image: {str(e)}")
@app.get("/download/{file_id}")
def download_result(file_id: str, verified: bool = Depends(verify_request)):
"""Download colorized image by file ID"""
filename = f"{file_id}.png"
path = RESULT_DIR / filename
if not path.exists():
raise HTTPException(status_code=404, detail="Result not found")
return FileResponse(path, media_type="image/png")
@app.get("/results/{filename}")
def get_result(filename: str):
"""Public endpoint to access colorized images"""
path = RESULT_DIR / filename
if not path.exists():
raise HTTPException(status_code=404, detail="Result not found")
return FileResponse(path, media_type="image/png")
# ========== Gradio Interface (Optional) ==========
def gradio_colorize(image, positive_prompt=None, negative_prompt=None, seed=123):
"""Gradio colorization function"""
if image is None:
return None, ""
try:
if inference_client is None:
return None, "Inference API client not initialized"
colorized, caption = colorize_image_sdxl(
image,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
seed=seed
)
return colorized, caption
except Exception as e:
logger.error("Gradio colorization error: %s", str(e))
return None, str(e)
title = "🎨 Text-Guided Image Colorization"
description = "Upload a grayscale image and generate a color version using Hugging Face Inference API (fal-ai provider)."
iface = gr.Interface(
fn=gradio_colorize,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Positive Prompt", placeholder="Enter details to enhance the caption"),
gr.Textbox(label="Negative Prompt", value=settings.NEGATIVE_PROMPT),
gr.Slider(0, 1000, 123, label="Seed")
],
outputs=[
gr.Image(type="pil", label="Colorized Image"),
gr.Textbox(label="Caption", show_copy_button=True)
],
title=title,
description=description,
)
# Mount Gradio app at root
app = gr.mount_gradio_app(app, iface, path="/")
# ========== Run Server ==========
if __name__ == "__main__":
port = int(os.getenv("PORT", "7860"))
uvicorn.run(app, host="0.0.0.0", port=port)
|