File size: 15,875 Bytes
779884f
ae9bbd0
 
779884f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae9bbd0
 
779884f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae9bbd0
 
779884f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae9bbd0
 
779884f
 
ae9bbd0
779884f
ae9bbd0
 
 
 
779884f
ae9bbd0
 
 
 
779884f
807fb92
ae9bbd0
779884f
 
 
 
ae9bbd0
779884f
 
 
 
 
 
 
ae9bbd0
 
 
779884f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae9bbd0
 
 
779884f
 
 
 
 
 
 
 
 
 
 
 
 
 
ae9bbd0
779884f
 
 
 
 
 
 
 
 
 
 
ae9bbd0
 
779884f
 
ae9bbd0
 
779884f
ae9bbd0
 
 
 
 
779884f
ae9bbd0
 
 
 
 
779884f
ae9bbd0
779884f
ae9bbd0
 
 
 
 
 
807fb92
ae9bbd0
807fb92
ae9bbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
779884f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae9bbd0
 
779884f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae9bbd0
 
779884f
 
 
 
 
 
 
 
 
 
 
 
 
ae9bbd0
779884f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
"""
FastAPI application for Text-Guided Image Colorization using Hugging Face Inference API
Uses fal-ai provider for memory-efficient inference
"""
import os
import io
import uuid
import logging
from pathlib import Path
from typing import Optional, Tuple

from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Request
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
import firebase_admin
from firebase_admin import credentials, app_check, auth as firebase_auth
from PIL import Image
import uvicorn
import gradio as gr

# Hugging Face Inference API
from huggingface_hub import InferenceClient

from app.config import settings

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Create writable directories
Path("/tmp/hf_cache").mkdir(parents=True, exist_ok=True)
Path("/tmp/matplotlib_config").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_uploads").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_results").mkdir(parents=True, exist_ok=True)

# Initialize FastAPI app
app = FastAPI(
    title="Text-Guided Image Colorization API",
    description="Image colorization using SDXL + ControlNet with automatic captioning",
    version="1.0.0"
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize Firebase Admin SDK
firebase_cred_path = os.getenv("FIREBASE_CREDENTIALS_PATH", "/tmp/firebase-adminsdk.json")
if os.path.exists(firebase_cred_path):
    try:
        cred = credentials.Certificate(firebase_cred_path)
        firebase_admin.initialize_app(cred)
        logger.info("Firebase Admin SDK initialized")
    except Exception as e:
        logger.warning("Failed to initialize Firebase: %s", str(e))
        try:
            firebase_admin.initialize_app()
        except:
            pass
else:
    logger.warning("Firebase credentials file not found. App Check will be disabled.")
    try:
        firebase_admin.initialize_app()
    except:
        pass

# Storage directories
UPLOAD_DIR = Path("/tmp/colorize_uploads")
RESULT_DIR = Path("/tmp/colorize_results")

# Mount static files
app.mount("/results", StaticFiles(directory=str(RESULT_DIR)), name="results")
app.mount("/uploads", StaticFiles(directory=str(UPLOAD_DIR)), name="uploads")

# Global Inference API client
inference_client = None
model_load_error: Optional[str] = None

# ========== Utility Functions ==========

def apply_color(image: Image.Image, color_map: Image.Image) -> Image.Image:
    """Apply color from color_map to image using LAB color space."""
    # Convert to LAB color space
    image_lab = image.convert('LAB')
    color_map_lab = color_map.convert('LAB')

    # Extract and merge LAB channels
    l, _, _ = image_lab.split()
    _, a_map, b_map = color_map_lab.split()
    merged_lab = Image.merge('LAB', (l, a_map, b_map))

    return merged_lab.convert('RGB')


def remove_unlikely_words(prompt: str) -> str:
    """Removes predefined unlikely phrases from prompt text."""
    unlikely_words = []

    a1 = [f'{i}s' for i in range(1900, 2000)]
    a2 = [f'{i}' for i in range(1900, 2000)]
    a3 = [f'year {i}' for i in range(1900, 2000)]
    a4 = [f'circa {i}' for i in range(1900, 2000)]

    b1 = [f"{y[0]} {y[1]} {y[2]} {y[3]} s" for y in a1]
    b2 = [f"{y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
    b3 = [f"year {y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
    b4 = [f"circa {y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]

    manual = [
        "black and white,", "black and white", "black & white,", "black & white", "circa", 
        "balck and white,", "monochrome,", "black-and-white,", "black-and-white photography,", 
        "black - and - white photography,", "monochrome bw,", "black white,", "black an white,",
        "grainy footage,", "grainy footage", "grainy photo,", "grainy photo", "b&w photo",
        "back and white", "back and white,", "monochrome contrast", "monochrome", "grainy",
        "grainy photograph,", "grainy photograph", "low contrast,", "low contrast", "b & w",
        "grainy black-and-white photo,", "bw", "bw,", "grainy black-and-white photo",
        "b & w,", "b&w,", "b&w!,", "b&w", "black - and - white,", "bw photo,", "grainy  photo,",
        "black-and-white photo,", "black-and-white photo", "black - and - white photography",
        "b&w photo,", "monochromatic photo,", "grainy monochrome photo,", "monochromatic",
        "blurry photo,", "blurry,", "blurry photography,", "monochromatic photo",
        "black - and - white photograph,", "black - and - white photograph", "black on white,",
        "black on white", "black-and-white", "historical image,", "historical picture,", 
        "historical photo,", "historical photograph,", "archival photo,", "taken in the early",
        "taken in the late", "taken in the", "historic photograph,", "restored,", "restored", 
        "historical photo", "historical setting,",
        "historic photo,", "historic", "desaturated!!,", "desaturated!,", "desaturated,", "desaturated", 
        "taken in", "shot on leica", "shot on leica sl2", "sl2",
        "taken with a leica camera", "leica sl2", "leica", "setting", 
        "overcast day", "overcast weather", "slight overcast", "overcast", 
        "picture taken in", "photo taken in", 
        ", photo", ",  photo", ",   photo", ",    photo", ", photograph",
        ",,", ",,,", ",,,,", " ,", "  ,", "   ,", "    ,", 
    ]

    unlikely_words.extend(a1 + a2 + a3 + a4 + b1 + b2 + b3 + b4 + manual)

    for word in unlikely_words:
        prompt = prompt.replace(word, "")
    return prompt


# ========== Model Loading ==========

@app.on_event("startup")
async def startup_event():
    """Initialize Hugging Face Inference API client"""
    global inference_client, model_load_error
    
    try:
        logger.info("🔄 Initializing Hugging Face Inference API client...")
        
        # Get HF token from environment or settings
        hf_token = os.getenv("HF_TOKEN") or settings.HF_TOKEN
        if not hf_token:
            raise ValueError("HF_TOKEN environment variable is required for Inference API")
        
        # Initialize InferenceClient with fal-ai provider
        inference_client = InferenceClient(
            provider="fal-ai",
            api_key=hf_token,
        )
        
        logger.info("✅ Inference API client initialized successfully!")
        model_load_error = None
        
    except Exception as e:
        error_msg = str(e)
        logger.error(f"❌ Failed to initialize Inference API client: {error_msg}")
        model_load_error = error_msg
        # Don't raise - allow health check to work


@app.on_event("shutdown")
async def shutdown_event():
    """Cleanup on shutdown"""
    global inference_client
    if inference_client:
        inference_client = None
    logger.info("Application shutdown")


# ========== Authentication ==========

def _extract_bearer_token(authorization_header: str | None) -> str | None:
    if not authorization_header:
        return None
    parts = authorization_header.split(" ", 1)
    if len(parts) == 2 and parts[0].lower() == "bearer":
        return parts[1].strip()
    return None


async def verify_request(request: Request):
    """Verify Firebase authentication"""
    if not firebase_admin._apps or os.getenv("DISABLE_AUTH", "false").lower() == "true":
        return True

    bearer = _extract_bearer_token(request.headers.get("Authorization"))
    if bearer:
        try:
            decoded = firebase_auth.verify_id_token(bearer)
            request.state.user = decoded
            logger.info("Firebase Auth id_token verified for uid: %s", decoded.get("uid"))
            return True
        except Exception as e:
            logger.warning("Auth token verification failed: %s", str(e))

    if settings.ENABLE_APP_CHECK:
        app_check_token = request.headers.get("X-Firebase-AppCheck")
        if not app_check_token:
            raise HTTPException(status_code=401, detail="Missing App Check token")
        try:
            app_check_claims = app_check.verify_token(app_check_token)
            logger.info("App Check token verified for: %s", app_check_claims.get("app_id"))
            return True
        except Exception as e:
            logger.warning("App Check token verification failed: %s", str(e))
            raise HTTPException(status_code=401, detail="Invalid App Check token")

    return True


# ========== API Endpoints ==========

@app.get("/api")
async def api_info():
    """API info endpoint"""
    return {
        "app": "Text-Guided Image Colorization API",
        "version": "1.0.0",
        "health": "/health",
        "colorize": "/colorize",
        "gradio": "/"
    }


@app.get("/health")
async def health_check():
    """Health check endpoint"""
    response = {
        "status": "healthy",
        "model_loaded": inference_client is not None,
        "model_type": "hf_inference_api",
        "provider": "fal-ai"
    }
    if model_load_error:
        response["model_error"] = model_load_error
    return response


def colorize_image_sdxl(
    image: Image.Image,
    positive_prompt: Optional[str] = None,
    negative_prompt: Optional[str] = None,
    seed: int = 123,
    num_inference_steps: int = 8
) -> Tuple[Image.Image, str]:
    """
    Colorize a grayscale or low-color image using Hugging Face Inference API.
    
    Args:
        image: PIL Image to colorize
        positive_prompt: Additional descriptive text to enhance the caption
        negative_prompt: Words or phrases to avoid during generation
        seed: Random seed for reproducible generation
        num_inference_steps: Number of inference steps
        
    Returns:
        Tuple of (colorized PIL Image, caption string)
    """
    if inference_client is None:
        raise RuntimeError("Inference API client not initialized")
    
    original_size = image.size
    # Resize to 512x512 for inference (FLUX models work well at this size)
    control_image = image.convert("RGB").resize((512, 512))
    
    # Convert image to bytes for API
    img_bytes = io.BytesIO()
    control_image.save(img_bytes, format="PNG")
    img_bytes.seek(0)
    input_image = img_bytes.read()
    
    # Construct prompt
    base_prompt = positive_prompt or "colorize this image with vibrant natural colors, high quality"
    if negative_prompt:
        # Note: Some models may not support negative_prompt directly
        final_prompt = f"{base_prompt}. Avoid: {negative_prompt}"
    else:
        final_prompt = base_prompt
    
    # Use Inference API for image-to-image generation
    model_name = settings.INFERENCE_MODEL
    logger.info(f"Calling Inference API with model {model_name}, prompt: {final_prompt}")
    try:
        result_image = inference_client.image_to_image(
            input_image,
            prompt=final_prompt,
            model=model_name,
        )
        
        # Resize back to original size
        if isinstance(result_image, Image.Image):
            colorized = result_image.resize(original_size)
        else:
            # If it's bytes, convert to PIL Image
            colorized = Image.open(io.BytesIO(result_image)).resize(original_size)
        
        # Generate a simple caption from the prompt
        caption = final_prompt[:100]  # Truncate for display
        
        return colorized, caption
        
    except Exception as e:
        logger.error(f"Inference API error: {e}")
        raise RuntimeError(f"Failed to colorize image: {str(e)}")


@app.post("/colorize")
async def colorize_api(
    file: UploadFile = File(...),
    positive_prompt: Optional[str] = None,
    negative_prompt: Optional[str] = None,
    seed: int = 123,
    num_inference_steps: int = 8,
    verified: bool = Depends(verify_request)
):
    """
    Upload a grayscale image -> returns colorized image.
    Uses SDXL + ControlNet with automatic captioning.
    """
    if inference_client is None:
        raise HTTPException(status_code=503, detail="Inference API client not initialized")
    
    if not file.content_type or not file.content_type.startswith("image/"):
        raise HTTPException(status_code=400, detail="File must be an image")
    
    try:
        img_bytes = await file.read()
        image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
        
        logger.info("Colorizing image with SDXL + ControlNet...")
        colorized, caption = colorize_image_sdxl(
            image,
            positive_prompt=positive_prompt,
            negative_prompt=negative_prompt,
            seed=seed,
            num_inference_steps=num_inference_steps
        )
        
        output_filename = f"{uuid.uuid4()}.png"
        output_path = RESULT_DIR / output_filename
        colorized.save(output_path, "PNG")
        
        logger.info("Colorized image saved: %s", output_filename)
        
        return JSONResponse({
            "success": True,
            "result_id": output_filename.replace(".png", ""),
            "caption": caption,
            "download_url": f"/results/{output_filename}",
            "api_download": f"/download/{output_filename.replace('.png', '')}"
        })
    except Exception as e:
        logger.error("Error colorizing image: %s", str(e))
        raise HTTPException(status_code=500, detail=f"Error colorizing image: {str(e)}")


@app.get("/download/{file_id}")
def download_result(file_id: str, verified: bool = Depends(verify_request)):
    """Download colorized image by file ID"""
    filename = f"{file_id}.png"
    path = RESULT_DIR / filename
    
    if not path.exists():
        raise HTTPException(status_code=404, detail="Result not found")
    
    return FileResponse(path, media_type="image/png")


@app.get("/results/{filename}")
def get_result(filename: str):
    """Public endpoint to access colorized images"""
    path = RESULT_DIR / filename
    if not path.exists():
        raise HTTPException(status_code=404, detail="Result not found")
    return FileResponse(path, media_type="image/png")


# ========== Gradio Interface (Optional) ==========

def gradio_colorize(image, positive_prompt=None, negative_prompt=None, seed=123):
    """Gradio colorization function"""
    if image is None:
        return None, ""
    try:
        if inference_client is None:
            return None, "Inference API client not initialized"
        colorized, caption = colorize_image_sdxl(
            image,
            positive_prompt=positive_prompt,
            negative_prompt=negative_prompt,
            seed=seed
        )
        return colorized, caption
    except Exception as e:
        logger.error("Gradio colorization error: %s", str(e))
        return None, str(e)


title = "🎨 Text-Guided Image Colorization"
description = "Upload a grayscale image and generate a color version using Hugging Face Inference API (fal-ai provider)."

iface = gr.Interface(
    fn=gradio_colorize,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Textbox(label="Positive Prompt", placeholder="Enter details to enhance the caption"),
        gr.Textbox(label="Negative Prompt", value=settings.NEGATIVE_PROMPT),
        gr.Slider(0, 1000, 123, label="Seed")
    ],
    outputs=[
        gr.Image(type="pil", label="Colorized Image"),
        gr.Textbox(label="Caption", show_copy_button=True)
    ],
    title=title,
    description=description,
)

# Mount Gradio app at root
app = gr.mount_gradio_app(app, iface, path="/")


# ========== Run Server ==========

if __name__ == "__main__":
    port = int(os.getenv("PORT", "7860"))
    uvicorn.run(app, host="0.0.0.0", port=port)