Update app/main.py
Browse files- app/main.py +98 -156
app/main.py
CHANGED
|
@@ -1,20 +1,22 @@
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile, HTTPException, Header
|
| 2 |
from fastapi.responses import FileResponse
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
-
|
| 8 |
-
import os, uuid, io, json
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
# 🚀
|
| 12 |
-
#
|
| 13 |
-
app = FastAPI(title="
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
# 🔐
|
| 17 |
-
#
|
| 18 |
try:
|
| 19 |
import firebase_admin
|
| 20 |
from firebase_admin import credentials, app_check
|
|
@@ -32,202 +34,142 @@ try:
|
|
| 32 |
except Exception as e:
|
| 33 |
print("❌ Firebase initialization failed:", e)
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
# 📁
|
| 37 |
-
#
|
| 38 |
-
UPLOAD_DIR = "uploads"
|
| 39 |
-
RESULTS_DIR = "results"
|
| 40 |
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 41 |
os.makedirs(RESULTS_DIR, exist_ok=True)
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
# 🧠
|
| 45 |
-
#
|
| 46 |
-
class UNet(nn.Module):
|
| 47 |
-
def __init__(self):
|
| 48 |
-
super(UNet, self).__init__()
|
| 49 |
-
|
| 50 |
-
def CBR(in_c, out_c):
|
| 51 |
-
return nn.Sequential(
|
| 52 |
-
nn.Conv2d(in_c, out_c, 3, padding=1),
|
| 53 |
-
nn.BatchNorm2d(out_c),
|
| 54 |
-
nn.ReLU(inplace=True)
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
self.enc1 = CBR(1, 64)
|
| 58 |
-
self.enc2 = CBR(64, 128)
|
| 59 |
-
self.enc3 = CBR(128, 256)
|
| 60 |
-
self.enc4 = CBR(256, 512)
|
| 61 |
-
|
| 62 |
-
self.pool = nn.MaxPool2d(2)
|
| 63 |
-
|
| 64 |
-
self.middle = CBR(512, 512)
|
| 65 |
-
|
| 66 |
-
self.up4 = nn.ConvTranspose2d(512, 256, 2, stride=2)
|
| 67 |
-
self.dec4 = CBR(512, 256)
|
| 68 |
-
|
| 69 |
-
self.up3 = nn.ConvTranspose2d(256, 128, 2, stride=2)
|
| 70 |
-
self.dec3 = CBR(256, 128)
|
| 71 |
-
|
| 72 |
-
self.up2 = nn.ConvTranspose2d(128, 64, 2, stride=2)
|
| 73 |
-
self.dec2 = CBR(128, 64)
|
| 74 |
-
|
| 75 |
-
self.out_layer = nn.Conv2d(64, 2, 1) # ab channels
|
| 76 |
-
|
| 77 |
-
def forward(self, x):
|
| 78 |
-
c1 = self.enc1(x)
|
| 79 |
-
p1 = self.pool(c1)
|
| 80 |
-
|
| 81 |
-
c2 = self.enc2(p1)
|
| 82 |
-
p2 = self.pool(c2)
|
| 83 |
-
|
| 84 |
-
c3 = self.enc3(p2)
|
| 85 |
-
p3 = self.pool(c3)
|
| 86 |
-
|
| 87 |
-
c4 = self.enc4(p3)
|
| 88 |
-
p4 = self.pool(c4)
|
| 89 |
-
|
| 90 |
-
mid = self.middle(p4)
|
| 91 |
-
|
| 92 |
-
u4 = self.up4(mid)
|
| 93 |
-
u4 = torch.cat([u4, c4], dim=1)
|
| 94 |
-
d4 = self.dec4(u4)
|
| 95 |
-
|
| 96 |
-
u3 = self.up3(d4)
|
| 97 |
-
u3 = torch.cat([u3, c3], dim=1)
|
| 98 |
-
d3 = self.dec3(u3)
|
| 99 |
-
|
| 100 |
-
u2 = self.up2(d3)
|
| 101 |
-
u2 = torch.cat([u2, c2], dim=1)
|
| 102 |
-
d2 = self.dec2(u2)
|
| 103 |
-
|
| 104 |
-
out = self.out_layer(d2)
|
| 105 |
-
return out
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
# ======================================================
|
| 109 |
-
# 🎨 LOAD MODEL WEIGHTS FROM HF
|
| 110 |
-
# ======================================================
|
| 111 |
MODEL_REPO = "Hammad712/GAN-Colorization-Model"
|
| 112 |
MODEL_FILENAME = "generator.pt"
|
| 113 |
|
| 114 |
print("⬇️ Downloading model...")
|
| 115 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
| 116 |
|
| 117 |
-
print("📦 Loading weights
|
| 118 |
-
model = UNet()
|
| 119 |
state_dict = torch.load(model_path, map_location="cpu")
|
| 120 |
-
model.load_state_dict(state_dict, strict=False)
|
| 121 |
-
model.eval()
|
| 122 |
|
| 123 |
-
#
|
| 124 |
-
#
|
| 125 |
-
#
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
def colorize_image(img: Image.Image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
# Normalize L channel
|
| 135 |
-
L = img_np.astype("float32") / 255.0
|
| 136 |
-
L_tensor = torch.tensor(L).unsqueeze(0).unsqueeze(0)
|
| 137 |
-
|
| 138 |
-
with torch.no_grad():
|
| 139 |
-
ab = model(L_tensor).squeeze(0).numpy()
|
| 140 |
-
|
| 141 |
-
ab = np.transpose(ab, (1, 2, 0))
|
| 142 |
-
|
| 143 |
-
# Resize ab to match L
|
| 144 |
-
ab = cv2.resize(ab, (img_np.shape[1], img_np.shape[0]))
|
| 145 |
-
|
| 146 |
-
# Combine L + ab -> LAB image
|
| 147 |
-
LAB = np.zeros((img_np.shape[0], img_np.shape[1], 3), dtype=np.float32)
|
| 148 |
-
LAB[..., 0] = L * 100
|
| 149 |
-
LAB[..., 1:] = ab * 128
|
| 150 |
-
|
| 151 |
-
# Convert LAB → RGB
|
| 152 |
-
rgb = cv2.cvtColor(LAB.astype("float32"), cv2.COLOR_LAB2RGB)
|
| 153 |
-
rgb = np.clip(rgb, 0, 1)
|
| 154 |
-
|
| 155 |
-
rgb_img = Image.fromarray((rgb * 255).astype("uint8"))
|
| 156 |
-
return rgb_img
|
| 157 |
-
|
| 158 |
-
# ======================================================
|
| 159 |
-
# 🔐 FIREBASE CHECK
|
| 160 |
-
# ======================================================
|
| 161 |
def verify_app_check_token(token: str):
|
| 162 |
if not token or len(token) < 20:
|
| 163 |
raise HTTPException(status_code=401, detail="Invalid Firebase App Check token")
|
| 164 |
return True
|
| 165 |
|
| 166 |
-
#
|
| 167 |
-
#
|
| 168 |
-
#
|
| 169 |
-
@app.get("/health")
|
| 170 |
-
def health_check():
|
| 171 |
-
return {"status": "healthy", "unet_loaded": True}
|
| 172 |
-
|
| 173 |
-
# ======================================================
|
| 174 |
-
# 📤 UPLOAD
|
| 175 |
-
# ======================================================
|
| 176 |
@app.post("/upload")
|
| 177 |
-
async def upload_image(
|
| 178 |
-
|
|
|
|
|
|
|
| 179 |
verify_app_check_token(x_firebase_appcheck)
|
| 180 |
|
|
|
|
|
|
|
|
|
|
| 181 |
image_id = f"{uuid.uuid4()}.jpg"
|
| 182 |
-
|
| 183 |
|
| 184 |
-
with open(
|
| 185 |
f.write(await file.read())
|
| 186 |
|
| 187 |
-
|
| 188 |
|
| 189 |
return {
|
| 190 |
"success": True,
|
| 191 |
-
"image_id": image_id
|
| 192 |
-
"
|
| 193 |
}
|
| 194 |
|
| 195 |
-
#
|
| 196 |
-
# 🎨
|
| 197 |
-
#
|
| 198 |
@app.post("/colorize")
|
| 199 |
-
async def colorize(
|
| 200 |
-
|
|
|
|
|
|
|
| 201 |
verify_app_check_token(x_firebase_appcheck)
|
| 202 |
|
|
|
|
|
|
|
|
|
|
| 203 |
img = Image.open(io.BytesIO(await file.read()))
|
| 204 |
output_img = colorize_image(img)
|
| 205 |
|
| 206 |
result_id = f"{uuid.uuid4()}.jpg"
|
| 207 |
-
|
| 208 |
-
output_img.save(
|
| 209 |
|
| 210 |
-
|
| 211 |
|
| 212 |
return {
|
| 213 |
"success": True,
|
| 214 |
-
"result_id": result_id
|
| 215 |
-
"
|
|
|
|
| 216 |
}
|
| 217 |
|
| 218 |
-
#
|
| 219 |
-
#
|
| 220 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
@app.get("/results/{filename}")
|
| 222 |
def get_result(filename: str):
|
| 223 |
path = os.path.join(RESULTS_DIR, filename)
|
| 224 |
if not os.path.exists(path):
|
| 225 |
-
raise HTTPException(status_code=404)
|
| 226 |
-
return FileResponse(path)
|
| 227 |
|
|
|
|
|
|
|
|
|
|
| 228 |
@app.get("/uploads/{filename}")
|
| 229 |
def get_upload(filename: str):
|
| 230 |
path = os.path.join(UPLOAD_DIR, filename)
|
| 231 |
if not os.path.exists(path):
|
| 232 |
-
raise HTTPException(status_code=404)
|
| 233 |
-
return FileResponse(path)
|
|
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile, HTTPException, Header
|
| 2 |
from fastapi.responses import FileResponse
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
+
import uuid
|
| 5 |
+
import os
|
| 6 |
+
import io
|
| 7 |
+
import json
|
| 8 |
from PIL import Image
|
| 9 |
import torch
|
| 10 |
+
from torchvision import transforms
|
|
|
|
| 11 |
|
| 12 |
+
# -------------------------------------------------
|
| 13 |
+
# 🚀 FastAPI App
|
| 14 |
+
# -------------------------------------------------
|
| 15 |
+
app = FastAPI(title="Text-Guided Image Colorization API")
|
| 16 |
|
| 17 |
+
# -------------------------------------------------
|
| 18 |
+
# 🔐 Firebase Initialization (ENV-based)
|
| 19 |
+
# -------------------------------------------------
|
| 20 |
try:
|
| 21 |
import firebase_admin
|
| 22 |
from firebase_admin import credentials, app_check
|
|
|
|
| 34 |
except Exception as e:
|
| 35 |
print("❌ Firebase initialization failed:", e)
|
| 36 |
|
| 37 |
+
# -------------------------------------------------
|
| 38 |
+
# 📁 Directories (FIXED FOR HUGGINGFACE SPACES)
|
| 39 |
+
# -------------------------------------------------
|
| 40 |
+
UPLOAD_DIR = "/tmp/uploads"
|
| 41 |
+
RESULTS_DIR = "/tmp/results"
|
| 42 |
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 43 |
os.makedirs(RESULTS_DIR, exist_ok=True)
|
| 44 |
|
| 45 |
+
# -------------------------------------------------
|
| 46 |
+
# 🧠 Load GAN Colorization Model
|
| 47 |
+
# -------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
MODEL_REPO = "Hammad712/GAN-Colorization-Model"
|
| 49 |
MODEL_FILENAME = "generator.pt"
|
| 50 |
|
| 51 |
print("⬇️ Downloading model...")
|
| 52 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
| 53 |
|
| 54 |
+
print("📦 Loading model weights...")
|
|
|
|
| 55 |
state_dict = torch.load(model_path, map_location="cpu")
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# NOTE: Replace with real model architecture
|
| 58 |
+
# from model import ColorizeNet
|
| 59 |
+
# model = ColorizeNet()
|
| 60 |
+
# model.load_state_dict(state_dict)
|
| 61 |
+
# model.eval()
|
| 62 |
|
| 63 |
def colorize_image(img: Image.Image):
|
| 64 |
+
""" Dummy colorizer (replace with real model.predict) """
|
| 65 |
+
transform = transforms.ToTensor()
|
| 66 |
+
tensor = transform(img.convert("L")).unsqueeze(0)
|
| 67 |
+
tensor = tensor.repeat(1, 3, 1, 1)
|
| 68 |
+
output_img = transforms.ToPILImage()(tensor.squeeze())
|
| 69 |
+
return output_img
|
| 70 |
+
|
| 71 |
+
# -------------------------------------------------
|
| 72 |
+
# 🩺 Health Check
|
| 73 |
+
# -------------------------------------------------
|
| 74 |
+
@app.get("/health")
|
| 75 |
+
def health_check():
|
| 76 |
+
return {"status": "healthy", "model_loaded": True}
|
| 77 |
|
| 78 |
+
# -------------------------------------------------
|
| 79 |
+
# 🔐 Firebase Token Validator
|
| 80 |
+
# -------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
def verify_app_check_token(token: str):
|
| 82 |
if not token or len(token) < 20:
|
| 83 |
raise HTTPException(status_code=401, detail="Invalid Firebase App Check token")
|
| 84 |
return True
|
| 85 |
|
| 86 |
+
# -------------------------------------------------
|
| 87 |
+
# 📤 Upload Image
|
| 88 |
+
# -------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
@app.post("/upload")
|
| 90 |
+
async def upload_image(
|
| 91 |
+
file: UploadFile = File(...),
|
| 92 |
+
x_firebase_appcheck: str = Header(None)
|
| 93 |
+
):
|
| 94 |
verify_app_check_token(x_firebase_appcheck)
|
| 95 |
|
| 96 |
+
if not file.content_type.startswith("image/"):
|
| 97 |
+
raise HTTPException(status_code=400, detail="Invalid file type")
|
| 98 |
+
|
| 99 |
image_id = f"{uuid.uuid4()}.jpg"
|
| 100 |
+
file_path = os.path.join(UPLOAD_DIR, image_id)
|
| 101 |
|
| 102 |
+
with open(file_path, "wb") as f:
|
| 103 |
f.write(await file.read())
|
| 104 |
|
| 105 |
+
base_url = "https://logicgoinfotechspaces-text-guided-image-colorization.hf.space"
|
| 106 |
|
| 107 |
return {
|
| 108 |
"success": True,
|
| 109 |
+
"image_id": image_id.replace(".jpg", ""),
|
| 110 |
+
"file_url": f"{base_url}/uploads/{image_id}"
|
| 111 |
}
|
| 112 |
|
| 113 |
+
# -------------------------------------------------
|
| 114 |
+
# 🎨 Colorize Image
|
| 115 |
+
# -------------------------------------------------
|
| 116 |
@app.post("/colorize")
|
| 117 |
+
async def colorize(
|
| 118 |
+
file: UploadFile = File(...),
|
| 119 |
+
x_firebase_appcheck: str = Header(None)
|
| 120 |
+
):
|
| 121 |
verify_app_check_token(x_firebase_appcheck)
|
| 122 |
|
| 123 |
+
if not file.content_type.startswith("image/"):
|
| 124 |
+
raise HTTPException(status_code=400, detail="Invalid file type")
|
| 125 |
+
|
| 126 |
img = Image.open(io.BytesIO(await file.read()))
|
| 127 |
output_img = colorize_image(img)
|
| 128 |
|
| 129 |
result_id = f"{uuid.uuid4()}.jpg"
|
| 130 |
+
output_path = os.path.join(RESULTS_DIR, result_id)
|
| 131 |
+
output_img.save(output_path)
|
| 132 |
|
| 133 |
+
base_url = "https://logicgoinfotechspaces-text-guided-image-colorization.hf.space"
|
| 134 |
|
| 135 |
return {
|
| 136 |
"success": True,
|
| 137 |
+
"result_id": result_id.replace(".jpg", ""),
|
| 138 |
+
"download_url": f"{base_url}/results/{result_id}",
|
| 139 |
+
"api_download": f"{base_url}/download/{result_id.replace('.jpg','')}"
|
| 140 |
}
|
| 141 |
|
| 142 |
+
# -------------------------------------------------
|
| 143 |
+
# ⬇️ Download via API (Secure)
|
| 144 |
+
# -------------------------------------------------
|
| 145 |
+
@app.get("/download/{file_id}")
|
| 146 |
+
def download_result(file_id: str, x_firebase_appcheck: str = Header(None)):
|
| 147 |
+
verify_app_check_token(x_firebase_appcheck)
|
| 148 |
+
|
| 149 |
+
filename = f"{file_id}.jpg"
|
| 150 |
+
path = os.path.join(RESULTS_DIR, filename)
|
| 151 |
+
|
| 152 |
+
if not os.path.exists(path):
|
| 153 |
+
raise HTTPException(status_code=404, detail="Result not found")
|
| 154 |
+
|
| 155 |
+
return FileResponse(path, media_type="image/jpeg")
|
| 156 |
+
|
| 157 |
+
# -------------------------------------------------
|
| 158 |
+
# 🌐 Public Result File
|
| 159 |
+
# -------------------------------------------------
|
| 160 |
@app.get("/results/{filename}")
|
| 161 |
def get_result(filename: str):
|
| 162 |
path = os.path.join(RESULTS_DIR, filename)
|
| 163 |
if not os.path.exists(path):
|
| 164 |
+
raise HTTPException(status_code=404, detail="Result not found")
|
| 165 |
+
return FileResponse(path, media_type="image/jpeg")
|
| 166 |
|
| 167 |
+
# -------------------------------------------------
|
| 168 |
+
# 🌐 Public Uploaded File
|
| 169 |
+
# -------------------------------------------------
|
| 170 |
@app.get("/uploads/{filename}")
|
| 171 |
def get_upload(filename: str):
|
| 172 |
path = os.path.join(UPLOAD_DIR, filename)
|
| 173 |
if not os.path.exists(path):
|
| 174 |
+
raise HTTPException(status_code=404, detail="File not found")
|
| 175 |
+
return FileResponse(path, media_type="image/jpeg")
|