Commit
·
f79a7fe
1
Parent(s):
dfc30a3
Switch colorization to HF Inference API
Browse files- app/colorize_model.py +78 -200
- app/config.py +5 -3
app/colorize_model.py
CHANGED
|
@@ -1,24 +1,17 @@
|
|
| 1 |
"""
|
| 2 |
-
Colorize model wrapper
|
| 3 |
-
`fffiloni/text-guided-image-colorization` Space.
|
| 4 |
"""
|
| 5 |
|
| 6 |
from __future__ import annotations
|
| 7 |
|
|
|
|
| 8 |
import logging
|
| 9 |
import os
|
| 10 |
from typing import Tuple
|
| 11 |
|
|
|
|
| 12 |
import torch
|
| 13 |
from PIL import Image
|
| 14 |
-
from diffusers import (
|
| 15 |
-
AutoencoderKL,
|
| 16 |
-
ControlNetModel,
|
| 17 |
-
StableDiffusionXLControlNetPipeline,
|
| 18 |
-
UNet2DConditionModel,
|
| 19 |
-
)
|
| 20 |
-
from huggingface_hub import hf_hub_download, snapshot_download
|
| 21 |
-
from safetensors.torch import load_file
|
| 22 |
from transformers import BlipForConditionalGeneration, BlipProcessor
|
| 23 |
|
| 24 |
from app.config import settings
|
|
@@ -29,17 +22,17 @@ logger = logging.getLogger(__name__)
|
|
| 29 |
def _ensure_cache_dir() -> str:
|
| 30 |
"""Ensure we have a writable Hugging Face cache directory."""
|
| 31 |
data_dir = os.getenv("DATA_DIR")
|
| 32 |
-
|
| 33 |
if data_dir:
|
| 34 |
-
|
| 35 |
-
|
| 36 |
[
|
| 37 |
os.path.join("/tmp", "hf_cache"),
|
| 38 |
os.path.join(os.path.expanduser("~"), ".cache", "huggingface"),
|
| 39 |
]
|
| 40 |
)
|
| 41 |
|
| 42 |
-
for path in
|
| 43 |
try:
|
| 44 |
os.makedirs(path, exist_ok=True)
|
| 45 |
logger.info("Using HF cache directory: %s", path)
|
|
@@ -47,235 +40,120 @@ def _ensure_cache_dir() -> str:
|
|
| 47 |
os.environ["HUGGINGFACE_HUB_CACHE"] = path
|
| 48 |
os.environ["TRANSFORMERS_CACHE"] = path
|
| 49 |
return path
|
| 50 |
-
except Exception as exc:
|
| 51 |
logger.warning("Failed to create cache dir %s: %s", path, exc)
|
| 52 |
|
| 53 |
raise RuntimeError("Unable to create a writable cache directory for Hugging Face downloads.")
|
| 54 |
|
| 55 |
|
| 56 |
-
def
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
_, a_channel, b_channel = color_map_lab.split()
|
| 62 |
-
merged = Image.merge("LAB", (l_channel, a_channel, b_channel))
|
| 63 |
-
return merged.convert("RGB")
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def _remove_unlikely_words(prompt: str) -> str:
|
| 67 |
-
"""Clean up BLIP captions to avoid misleading descriptors."""
|
| 68 |
-
unlikely_words = []
|
| 69 |
-
|
| 70 |
-
decades = [f"{i}s" for i in range(1900, 2000)]
|
| 71 |
-
years = [f"{i}" for i in range(1900, 2000)]
|
| 72 |
-
years_with_word = [f"year {i}" for i in range(1900, 2000)]
|
| 73 |
-
circa_years = [f"circa {i}" for i in range(1900, 2000)]
|
| 74 |
-
|
| 75 |
-
expanded = [
|
| 76 |
-
[f"{d[0]} {d[1]} {d[2]} {d[3]} s" for d in decades],
|
| 77 |
-
[f"{d[0]} {d[1]} {d[2]} {d[3]}" for d in decades],
|
| 78 |
-
[f"year {d[0]} {d[1]} {d[2]} {d[3]}" for d in decades],
|
| 79 |
-
[f"circa {d[0]} {d[1]} {d[2]} {d[3]}" for d in decades],
|
| 80 |
-
]
|
| 81 |
-
|
| 82 |
-
manual_terms = [
|
| 83 |
-
"black and white,", "black and white", "black & white,", "black & white",
|
| 84 |
-
"circa", "monochrome,", "monochrome", "bw", "bw,", "b&w", "b&w,",
|
| 85 |
-
"grainy", "grainy photo", "grainy photograph", "grainy footage",
|
| 86 |
-
"black-and-white", "black - and - white", "black on white",
|
| 87 |
-
"historical photo", "historic photo", "restored", "desaturated",
|
| 88 |
-
"low contrast", "blurry", "overcast", "taken in", "photo taken in",
|
| 89 |
-
", photo", ", photo", ", photo", ", photograph",
|
| 90 |
]
|
| 91 |
-
|
| 92 |
-
for seq in expanded:
|
| 93 |
-
unlikely_words.extend(seq)
|
| 94 |
-
unlikely_words.extend(decades + years + years_with_word + circa_years + manual_terms)
|
| 95 |
-
|
| 96 |
cleaned = prompt
|
| 97 |
-
for word in
|
| 98 |
cleaned = cleaned.replace(word, "")
|
| 99 |
return cleaned.strip(" ,")
|
| 100 |
|
| 101 |
|
| 102 |
class ColorizeModel:
|
| 103 |
-
"""Colorization model
|
| 104 |
|
| 105 |
-
CONTROLNET_REPO = "nickpai/sdxl_light_caption_output"
|
| 106 |
-
CONTROLNET_SUBDIR = os.path.join("checkpoint-30000", "controlnet")
|
| 107 |
-
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 108 |
-
LIGHTNING_REPO = "ByteDance/SDXL-Lightning"
|
| 109 |
-
LIGHTNING_WEIGHTS = "sdxl_lightning_8step_unet.safetensors"
|
| 110 |
CAPTION_MODEL = "Salesforce/blip-image-captioning-large"
|
| 111 |
|
| 112 |
def __init__(self, model_id: str | None = None) -> None:
|
| 113 |
-
self.
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
|
|
|
| 116 |
self.dtype = torch.float16 if self.device.type == "cuda" else torch.float32
|
| 117 |
os.environ.setdefault("OMP_NUM_THREADS", "1")
|
| 118 |
|
| 119 |
-
self.hf_token = (
|
| 120 |
-
os.getenv("HF_TOKEN")
|
| 121 |
-
or os.getenv("HUGGINGFACE_HUB_TOKEN")
|
| 122 |
-
or None
|
| 123 |
-
)
|
| 124 |
self.cache_dir = _ensure_cache_dir()
|
| 125 |
-
|
| 126 |
-
self.num_inference_steps = settings.NUM_INFERENCE_STEPS
|
| 127 |
-
self.guidance_scale = settings.GUIDANCE_SCALE
|
| 128 |
-
self.controlnet_scale = settings.CONTROLNET_SCALE
|
| 129 |
self.positive_prompt = settings.POSITIVE_PROMPT
|
| 130 |
self.negative_prompt = settings.NEGATIVE_PROMPT
|
|
|
|
|
|
|
| 131 |
self.caption_prefix = settings.CAPTION_PREFIX
|
| 132 |
self.seed = settings.COLORIZE_SEED
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
self.model_id = model_id or settings.MODEL_ID
|
| 135 |
-
|
| 136 |
-
self._load_pipeline()
|
| 137 |
self._load_caption_model()
|
| 138 |
-
self.last_caption: str | None = None
|
| 139 |
-
|
| 140 |
-
# --------------------------------------------------------------------- #
|
| 141 |
-
# Initialisation helpers
|
| 142 |
-
# --------------------------------------------------------------------- #
|
| 143 |
-
def _download_controlnet(self) -> str:
|
| 144 |
-
logger.info("Downloading ControlNet snapshot: %s", self.CONTROLNET_REPO)
|
| 145 |
-
local_dir = os.path.join(self.cache_dir, "sdxl_light_caption_output")
|
| 146 |
-
path = snapshot_download(
|
| 147 |
-
repo_id=self.CONTROLNET_REPO,
|
| 148 |
-
local_dir=local_dir,
|
| 149 |
-
local_dir_use_symlinks=False,
|
| 150 |
-
token=self.hf_token,
|
| 151 |
-
)
|
| 152 |
-
controlnet_path = os.path.join(path, self.CONTROLNET_SUBDIR)
|
| 153 |
-
if not os.path.isdir(controlnet_path):
|
| 154 |
-
raise RuntimeError(f"ControlNet weights not found at {controlnet_path}")
|
| 155 |
-
return controlnet_path
|
| 156 |
-
|
| 157 |
-
def _load_pipeline(self) -> None:
|
| 158 |
-
controlnet_path = self._download_controlnet()
|
| 159 |
-
base_kwargs = {"use_auth_token": self.hf_token} if self.hf_token else {}
|
| 160 |
-
|
| 161 |
-
logger.info("Loading SDXL components...")
|
| 162 |
-
vae = AutoencoderKL.from_pretrained(self.BASE_MODEL, subfolder="vae", torch_dtype=self.dtype, token=self.hf_token)
|
| 163 |
-
unet = UNet2DConditionModel.from_config(
|
| 164 |
-
self.BASE_MODEL,
|
| 165 |
-
subfolder="unet",
|
| 166 |
-
token=self.hf_token if self.hf_token else None,
|
| 167 |
-
)
|
| 168 |
-
lightning_path = hf_hub_download(
|
| 169 |
-
repo_id=self.LIGHTNING_REPO,
|
| 170 |
-
filename=self.LIGHTNING_WEIGHTS,
|
| 171 |
-
token=self.hf_token if self.hf_token else None,
|
| 172 |
-
)
|
| 173 |
-
unet.load_state_dict(load_file(lightning_path))
|
| 174 |
-
|
| 175 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=self.dtype)
|
| 176 |
-
|
| 177 |
-
try:
|
| 178 |
-
self.pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 179 |
-
self.BASE_MODEL,
|
| 180 |
-
vae=vae,
|
| 181 |
-
unet=unet,
|
| 182 |
-
controlnet=controlnet,
|
| 183 |
-
torch_dtype=self.dtype,
|
| 184 |
-
safety_checker=None,
|
| 185 |
-
requires_safety_checker=False,
|
| 186 |
-
token=self.hf_token if self.hf_token else None,
|
| 187 |
-
)
|
| 188 |
-
except Exception as exc:
|
| 189 |
-
logger.error("Failed to load base SDXL model: %s", exc)
|
| 190 |
-
logger.error(
|
| 191 |
-
"Ensure the account associated with HUGGINGFACE_HUB_TOKEN has accepted "
|
| 192 |
-
"the license for %s and that the token has access.", self.BASE_MODEL
|
| 193 |
-
)
|
| 194 |
-
raise
|
| 195 |
-
self.pipe.set_progress_bar_config(disable=True)
|
| 196 |
-
|
| 197 |
-
if self.device.type == "cuda":
|
| 198 |
-
self.pipe.to(self.device, dtype=self.dtype)
|
| 199 |
-
if hasattr(self.pipe, "enable_xformers_memory_efficient_attention"):
|
| 200 |
-
try:
|
| 201 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
| 202 |
-
except Exception as exc: # pragma: no cover
|
| 203 |
-
logger.warning("Could not enable xformers attention: %s", exc)
|
| 204 |
-
else:
|
| 205 |
-
self.pipe.to(self.device, dtype=self.dtype)
|
| 206 |
-
|
| 207 |
-
logger.info("Colorization pipeline ready.")
|
| 208 |
|
| 209 |
def _load_caption_model(self) -> None:
|
| 210 |
-
logger.info("Loading BLIP captioning model...")
|
| 211 |
-
|
| 212 |
-
|
| 213 |
self.CAPTION_MODEL,
|
| 214 |
torch_dtype=self.dtype if self.device.type == "cuda" else torch.float32,
|
| 215 |
-
|
| 216 |
-
)
|
| 217 |
-
self.caption_processor = processor
|
| 218 |
-
self.caption_model = model.to(self.device)
|
| 219 |
|
| 220 |
-
# --------------------------------------------------------------------- #
|
| 221 |
-
# Public API
|
| 222 |
-
# --------------------------------------------------------------------- #
|
| 223 |
def caption_image(self, image: Image.Image) -> str:
|
| 224 |
-
"""Generate a cleaned caption for the image."""
|
| 225 |
inputs = self.caption_processor(
|
| 226 |
image,
|
| 227 |
self.caption_prefix,
|
| 228 |
return_tensors="pt",
|
| 229 |
).to(self.device)
|
| 230 |
|
| 231 |
-
# BLIP on CPU expects float32 inputs
|
| 232 |
if self.device.type != "cuda":
|
| 233 |
inputs = {k: v.to(torch.float32) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
| 234 |
|
| 235 |
with torch.inference_mode():
|
| 236 |
caption_ids = self.caption_model.generate(**inputs)
|
| 237 |
caption = self.caption_processor.decode(caption_ids[0], skip_special_tokens=True)
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
logger.exception("Error during colorization: %s", exc)
|
| 280 |
-
raise
|
| 281 |
|
|
|
|
| 1 |
"""
|
| 2 |
+
Colorize model wrapper that forwards requests to the Hugging Face Inference API.
|
|
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
from __future__ import annotations
|
| 6 |
|
| 7 |
+
import io
|
| 8 |
import logging
|
| 9 |
import os
|
| 10 |
from typing import Tuple
|
| 11 |
|
| 12 |
+
import requests
|
| 13 |
import torch
|
| 14 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from transformers import BlipForConditionalGeneration, BlipProcessor
|
| 16 |
|
| 17 |
from app.config import settings
|
|
|
|
| 22 |
def _ensure_cache_dir() -> str:
|
| 23 |
"""Ensure we have a writable Hugging Face cache directory."""
|
| 24 |
data_dir = os.getenv("DATA_DIR")
|
| 25 |
+
candidates = []
|
| 26 |
if data_dir:
|
| 27 |
+
candidates.append(os.path.join(data_dir, "hf_cache"))
|
| 28 |
+
candidates.extend(
|
| 29 |
[
|
| 30 |
os.path.join("/tmp", "hf_cache"),
|
| 31 |
os.path.join(os.path.expanduser("~"), ".cache", "huggingface"),
|
| 32 |
]
|
| 33 |
)
|
| 34 |
|
| 35 |
+
for path in candidates:
|
| 36 |
try:
|
| 37 |
os.makedirs(path, exist_ok=True)
|
| 38 |
logger.info("Using HF cache directory: %s", path)
|
|
|
|
| 40 |
os.environ["HUGGINGFACE_HUB_CACHE"] = path
|
| 41 |
os.environ["TRANSFORMERS_CACHE"] = path
|
| 42 |
return path
|
| 43 |
+
except Exception as exc:
|
| 44 |
logger.warning("Failed to create cache dir %s: %s", path, exc)
|
| 45 |
|
| 46 |
raise RuntimeError("Unable to create a writable cache directory for Hugging Face downloads.")
|
| 47 |
|
| 48 |
|
| 49 |
+
def _clean_caption(prompt: str) -> str:
|
| 50 |
+
replacements = [
|
| 51 |
+
"black and white", "black & white", "monochrome", "monochromatic",
|
| 52 |
+
"bw photo", "blurry", "grainy", "historical", "restored", "circa",
|
| 53 |
+
"taken in", "overcast", "desaturated", "low contrast",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
cleaned = prompt
|
| 56 |
+
for word in replacements:
|
| 57 |
cleaned = cleaned.replace(word, "")
|
| 58 |
return cleaned.strip(" ,")
|
| 59 |
|
| 60 |
|
| 61 |
class ColorizeModel:
|
| 62 |
+
"""Colorization model that leverages the HF Inference API."""
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
CAPTION_MODEL = "Salesforce/blip-image-captioning-large"
|
| 65 |
|
| 66 |
def __init__(self, model_id: str | None = None) -> None:
|
| 67 |
+
self.model_id = model_id or settings.MODEL_ID
|
| 68 |
+
self.api_url = f"https://api-inference.huggingface.co/models/{self.model_id}"
|
| 69 |
+
|
| 70 |
+
self.api_token = (
|
| 71 |
+
os.getenv("HUGGINGFACE_API_TOKEN")
|
| 72 |
+
or os.getenv("HUGGINGFACE_HUB_TOKEN")
|
| 73 |
+
or os.getenv("HF_TOKEN")
|
| 74 |
+
)
|
| 75 |
+
if not self.api_token:
|
| 76 |
+
raise RuntimeError(
|
| 77 |
+
"HUGGINGFACE_API_TOKEN (or HUGGINGFACE_HUB_TOKEN / HF_TOKEN) is not set. "
|
| 78 |
+
"Please provide an access token with Inference API permissions."
|
| 79 |
+
)
|
| 80 |
|
| 81 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 82 |
self.dtype = torch.float16 if self.device.type == "cuda" else torch.float32
|
| 83 |
os.environ.setdefault("OMP_NUM_THREADS", "1")
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
self.cache_dir = _ensure_cache_dir()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
self.positive_prompt = settings.POSITIVE_PROMPT
|
| 87 |
self.negative_prompt = settings.NEGATIVE_PROMPT
|
| 88 |
+
self.num_inference_steps = settings.NUM_INFERENCE_STEPS
|
| 89 |
+
self.guidance_scale = settings.GUIDANCE_SCALE
|
| 90 |
self.caption_prefix = settings.CAPTION_PREFIX
|
| 91 |
self.seed = settings.COLORIZE_SEED
|
| 92 |
+
self.timeout = settings.INFERENCE_TIMEOUT
|
| 93 |
+
self.provider = settings.INFERENCE_PROVIDER
|
| 94 |
|
|
|
|
|
|
|
|
|
|
| 95 |
self._load_caption_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
def _load_caption_model(self) -> None:
|
| 98 |
+
logger.info("Loading BLIP captioning model for prompt generation...")
|
| 99 |
+
self.caption_processor = BlipProcessor.from_pretrained(self.CAPTION_MODEL)
|
| 100 |
+
self.caption_model = BlipForConditionalGeneration.from_pretrained(
|
| 101 |
self.CAPTION_MODEL,
|
| 102 |
torch_dtype=self.dtype if self.device.type == "cuda" else torch.float32,
|
| 103 |
+
).to(self.device)
|
|
|
|
|
|
|
|
|
|
| 104 |
|
|
|
|
|
|
|
|
|
|
| 105 |
def caption_image(self, image: Image.Image) -> str:
|
|
|
|
| 106 |
inputs = self.caption_processor(
|
| 107 |
image,
|
| 108 |
self.caption_prefix,
|
| 109 |
return_tensors="pt",
|
| 110 |
).to(self.device)
|
| 111 |
|
|
|
|
| 112 |
if self.device.type != "cuda":
|
| 113 |
inputs = {k: v.to(torch.float32) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
| 114 |
|
| 115 |
with torch.inference_mode():
|
| 116 |
caption_ids = self.caption_model.generate(**inputs)
|
| 117 |
caption = self.caption_processor.decode(caption_ids[0], skip_special_tokens=True)
|
| 118 |
+
return _clean_caption(caption)
|
| 119 |
+
|
| 120 |
+
def _build_payload(self, prompt: str) -> dict:
|
| 121 |
+
payload = {
|
| 122 |
+
"inputs": prompt,
|
| 123 |
+
"parameters": {
|
| 124 |
+
"num_inference_steps": self.num_inference_steps,
|
| 125 |
+
"guidance_scale": self.guidance_scale,
|
| 126 |
+
"negative_prompt": self.negative_prompt,
|
| 127 |
+
"seed": self.seed,
|
| 128 |
+
},
|
| 129 |
+
}
|
| 130 |
+
if self.provider:
|
| 131 |
+
payload["provider"] = {"name": self.provider}
|
| 132 |
+
return payload
|
| 133 |
+
|
| 134 |
+
def colorize(self, image: Image.Image, _num_inference_steps: int | None = None) -> Tuple[Image.Image, str]:
|
| 135 |
+
caption = self.caption_image(image)
|
| 136 |
+
prompt_parts = [self.positive_prompt, caption]
|
| 137 |
+
prompt = ", ".join([p for p in prompt_parts if p])
|
| 138 |
+
|
| 139 |
+
headers = {
|
| 140 |
+
"Authorization": f"Bearer {self.api_token}",
|
| 141 |
+
"Content-Type": "application/json",
|
| 142 |
+
}
|
| 143 |
+
payload = self._build_payload(prompt)
|
| 144 |
+
|
| 145 |
+
logger.info("Calling HF Inference API for prompt: %s", prompt)
|
| 146 |
+
response = requests.post(self.api_url, headers=headers, json=payload, timeout=self.timeout)
|
| 147 |
+
|
| 148 |
+
if response.status_code != 200:
|
| 149 |
+
try:
|
| 150 |
+
data = response.json()
|
| 151 |
+
except ValueError:
|
| 152 |
+
data = response.text
|
| 153 |
+
logger.error("Inference API error (%s): %s", response.status_code, data)
|
| 154 |
+
raise RuntimeError(f"Inference API error ({response.status_code}): {data}")
|
| 155 |
+
|
| 156 |
+
colorized = Image.open(io.BytesIO(response.content)).convert("RGB")
|
| 157 |
+
colorized = colorized.resize(image.size, Image.Resampling.LANCZOS)
|
| 158 |
+
return colorized, caption
|
|
|
|
|
|
|
| 159 |
|
app/config.py
CHANGED
|
@@ -17,9 +17,9 @@ class Settings(BaseSettings):
|
|
| 17 |
# API settings
|
| 18 |
BASE_URL: str = os.getenv("BASE_URL", "http://localhost:8000")
|
| 19 |
|
| 20 |
-
# Model settings
|
| 21 |
-
MODEL_ID: str = os.getenv("MODEL_ID", "
|
| 22 |
-
NUM_INFERENCE_STEPS: int = int(os.getenv("NUM_INFERENCE_STEPS", "
|
| 23 |
POSITIVE_PROMPT: str = os.getenv(
|
| 24 |
"POSITIVE_PROMPT",
|
| 25 |
"high quality color photo, vibrant natural colors, detailed lighting"
|
|
@@ -32,6 +32,8 @@ class Settings(BaseSettings):
|
|
| 32 |
CONTROLNET_SCALE: float = float(os.getenv("CONTROLNET_SCALE", "1.0"))
|
| 33 |
CAPTION_PREFIX: str = os.getenv("CAPTION_PREFIX", "a photography of")
|
| 34 |
COLORIZE_SEED: int = int(os.getenv("COLORIZE_SEED", "123"))
|
|
|
|
|
|
|
| 35 |
|
| 36 |
# Storage settings
|
| 37 |
UPLOAD_DIR: str = os.getenv("UPLOAD_DIR", "uploads")
|
|
|
|
| 17 |
# API settings
|
| 18 |
BASE_URL: str = os.getenv("BASE_URL", "http://localhost:8000")
|
| 19 |
|
| 20 |
+
# Model / inference settings
|
| 21 |
+
MODEL_ID: str = os.getenv("MODEL_ID", "stabilityai/stable-diffusion-xl-base-1.0")
|
| 22 |
+
NUM_INFERENCE_STEPS: int = int(os.getenv("NUM_INFERENCE_STEPS", "30"))
|
| 23 |
POSITIVE_PROMPT: str = os.getenv(
|
| 24 |
"POSITIVE_PROMPT",
|
| 25 |
"high quality color photo, vibrant natural colors, detailed lighting"
|
|
|
|
| 32 |
CONTROLNET_SCALE: float = float(os.getenv("CONTROLNET_SCALE", "1.0"))
|
| 33 |
CAPTION_PREFIX: str = os.getenv("CAPTION_PREFIX", "a photography of")
|
| 34 |
COLORIZE_SEED: int = int(os.getenv("COLORIZE_SEED", "123"))
|
| 35 |
+
INFERENCE_PROVIDER: str = os.getenv("INFERENCE_PROVIDER", "hf-inference")
|
| 36 |
+
INFERENCE_TIMEOUT: int = int(os.getenv("INFERENCE_TIMEOUT", "180"))
|
| 37 |
|
| 38 |
# Storage settings
|
| 39 |
UPLOAD_DIR: str = os.getenv("UPLOAD_DIR", "uploads")
|