""" FastAPI application for FastAI GAN Image Colorization with Firebase Authentication and Gradio UI """ import os # Set environment variables BEFORE any imports os.environ["OMP_NUM_THREADS"] = "1" os.environ["HF_HOME"] = "/tmp/hf_cache" os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache" os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache" os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache" os.environ["XDG_CACHE_HOME"] = "/tmp/hf_cache" os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib_config" import io import uuid import logging from pathlib import Path from typing import Optional from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Request from fastapi.responses import FileResponse, JSONResponse from fastapi.middleware.cors import CORSMiddleware from fastapi.staticfiles import StaticFiles import firebase_admin from firebase_admin import credentials, app_check, auth as firebase_auth from PIL import Image import torch import uvicorn import gradio as gr # FastAI imports from fastai.vision.all import * from huggingface_hub import from_pretrained_fastai from app.config import settings # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Create writable directories Path("/tmp/hf_cache").mkdir(parents=True, exist_ok=True) Path("/tmp/matplotlib_config").mkdir(parents=True, exist_ok=True) Path("/tmp/colorize_uploads").mkdir(parents=True, exist_ok=True) Path("/tmp/colorize_results").mkdir(parents=True, exist_ok=True) # Initialize FastAPI app app = FastAPI( title="FastAI Image Colorizer API", description="Image colorization using FastAI GAN model with Firebase authentication", version="1.0.0" ) # CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Initialize Firebase Admin SDK firebase_cred_path = os.getenv("FIREBASE_CREDENTIALS_PATH", "/tmp/firebase-adminsdk.json") if os.path.exists(firebase_cred_path): try: cred = credentials.Certificate(firebase_cred_path) firebase_admin.initialize_app(cred) logger.info("Firebase Admin SDK initialized") except Exception as e: logger.warning("Failed to initialize Firebase: %s", str(e)) try: firebase_admin.initialize_app() except: pass else: logger.warning("Firebase credentials file not found. App Check will be disabled.") try: firebase_admin.initialize_app() except: pass # Storage directories UPLOAD_DIR = Path("/tmp/colorize_uploads") RESULT_DIR = Path("/tmp/colorize_results") # Mount static files app.mount("/results", StaticFiles(directory=str(RESULT_DIR)), name="results") app.mount("/uploads", StaticFiles(directory=str(UPLOAD_DIR)), name="uploads") # Initialize FastAI model learn = None model_load_error: Optional[str] = None @app.on_event("startup") async def startup_event(): """Load FastAI model on startup""" global learn, model_load_error try: model_id = os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model") logger.info("🔄 Loading FastAI GAN Colorization Model: %s", model_id) learn = from_pretrained_fastai(model_id) logger.info("✅ Model loaded successfully!") model_load_error = None except Exception as e: error_msg = str(e) logger.error("❌ Failed to load model: %s", error_msg) model_load_error = error_msg # Don't raise - allow health check to work @app.on_event("shutdown") async def shutdown_event(): """Cleanup on shutdown""" global learn if learn: del learn logger.info("Application shutdown") def _extract_bearer_token(authorization_header: str | None) -> str | None: if not authorization_header: return None parts = authorization_header.split(" ", 1) if len(parts) == 2 and parts[0].lower() == "bearer": return parts[1].strip() return None async def verify_request(request: Request): """ Verify Firebase authentication Accept either: - Firebase Auth id_token via Authorization: Bearer - Firebase App Check token via X-Firebase-AppCheck (when ENABLE_APP_CHECK=true) """ # If Firebase is not initialized or auth is explicitly disabled, allow if not firebase_admin._apps or os.getenv("DISABLE_AUTH", "false").lower() == "true": return True # Try Firebase Auth id_token first if present bearer = _extract_bearer_token(request.headers.get("Authorization")) if bearer: try: decoded = firebase_auth.verify_id_token(bearer) request.state.user = decoded logger.info("Firebase Auth id_token verified for uid: %s", decoded.get("uid")) return True except Exception as e: logger.warning("Auth token verification failed: %s", str(e)) # If App Check is enabled, require valid App Check token if settings.ENABLE_APP_CHECK: app_check_token = request.headers.get("X-Firebase-AppCheck") if not app_check_token: raise HTTPException(status_code=401, detail="Missing App Check token") try: app_check_claims = app_check.verify_token(app_check_token) logger.info("App Check token verified for: %s", app_check_claims.get("app_id")) return True except Exception as e: logger.warning("App Check token verification failed: %s", str(e)) raise HTTPException(status_code=401, detail="Invalid App Check token") # Neither token required nor provided → allow (App Check disabled) return True @app.get("/api") async def api_info(): """API info endpoint""" return { "app": "FastAI Image Colorizer API", "version": "1.0.0", "health": "/health", "colorize": "/colorize", "gradio": "/" } @app.get("/health") async def health_check(): """Health check endpoint""" response = { "status": "healthy", "model_loaded": learn is not None, "model_id": os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model") } if model_load_error: response["model_error"] = model_load_error return response def colorize_pil(image: Image.Image) -> Image.Image: """Run model prediction and return colorized image""" if learn is None: raise RuntimeError("Model not loaded") if image.mode != "RGB": image = image.convert("RGB") pred = learn.predict(image) # Handle different return types from FastAI if isinstance(pred, (list, tuple)): colorized = pred[0] if len(pred) > 0 else image else: colorized = pred # Ensure we have a PIL Image if not isinstance(colorized, Image.Image): if isinstance(colorized, torch.Tensor): # Convert tensor to PIL if colorized.dim() == 4: colorized = colorized[0] if colorized.dim() == 3: colorized = colorized.permute(1, 2, 0).cpu() if colorized.dtype in (torch.float32, torch.float16): colorized = torch.clamp(colorized, 0, 1) colorized = (colorized * 255).byte() colorized = Image.fromarray(colorized.numpy(), 'RGB') else: raise ValueError(f"Unexpected tensor shape: {colorized.shape}") else: raise ValueError(f"Unexpected prediction type: {type(colorized)}") if colorized.mode != "RGB": colorized = colorized.convert("RGB") return colorized @app.post("/colorize") async def colorize_api( file: UploadFile = File(...), verified: bool = Depends(verify_request) ): """ Upload a black & white image -> returns colorized image. Requires Firebase authentication unless DISABLE_AUTH=true """ if learn is None: raise HTTPException(status_code=503, detail="Colorization model not loaded") if not file.content_type or not file.content_type.startswith("image/"): raise HTTPException(status_code=400, detail="File must be an image") try: img_bytes = await file.read() image = Image.open(io.BytesIO(img_bytes)).convert("RGB") logger.info("Colorizing image...") colorized = colorize_pil(image) output_filename = f"{uuid.uuid4()}.png" output_path = RESULT_DIR / output_filename colorized.save(output_path, "PNG") logger.info("Colorized image saved: %s", output_filename) # Return the image file return FileResponse( output_path, media_type="image/png", filename=f"colorized_{output_filename}" ) except Exception as e: logger.error("Error colorizing image: %s", str(e)) raise HTTPException(status_code=500, detail=f"Error colorizing image: {str(e)}") # ========================================================== # Gradio Interface (for Space UI) # ========================================================== def gradio_colorize(image): """Gradio colorization function""" if image is None: return None try: if learn is None: return None return colorize_pil(image) except Exception as e: logger.error("Gradio colorization error: %s", str(e)) return None title = "🎨 FastAI GAN Image Colorizer" description = "Upload a black & white photo to generate a colorized version using the FastAI GAN model." iface = gr.Interface( fn=gradio_colorize, inputs=gr.Image(type="pil", label="Upload B&W Image"), outputs=gr.Image(type="pil", label="Colorized Image"), title=title, description=description, ) # Mount Gradio app at root (this will be the Space UI) # Note: This will override the root endpoint, so use /api for API info app = gr.mount_gradio_app(app, iface, path="/") # ========================================================== # Run Server # ========================================================== if __name__ == "__main__": port = int(os.getenv("PORT", "7860")) uvicorn.run(app, host="0.0.0.0", port=port)