Spaces:
Running
Running
File size: 17,611 Bytes
0491e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
"""
AI Focus Agent with OpenAI/Claude integration and personality system.
"""
import os
from typing import Dict, List, Optional, Union
from datetime import datetime
import json
class FocusAgent:
"""AI agent that monitors focus and provides Duolingo-style nudges."""
def __init__(self, provider: str = "openai", api_key: Optional[str] = None,
base_url: Optional[str] = None, model: Optional[str] = None):
"""Initialize the focus agent with AI provider."""
self.provider = provider.lower()
self.last_verdict: Optional[str] = None
self.idle_count = 0
self.distracted_count = 0
self.connection_healthy = False
if self.provider == "openai":
from openai import OpenAI
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
self.client = OpenAI(api_key=self.api_key) if self.api_key else None
self.model = model or "gpt-4o"
self.connection_healthy = bool(self.api_key)
elif self.provider == "anthropic":
from anthropic import Anthropic
self.api_key = api_key or os.getenv("ANTHROPIC_API_KEY")
self.client = Anthropic(api_key=self.api_key) if self.api_key else None
self.model = model or "claude-haiku-4-5-20251001"
self.connection_healthy = bool(self.api_key)
elif self.provider == "gemini":
import google.generativeai as genai
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
if self.api_key:
genai.configure(api_key=self.api_key)
self.client = genai.GenerativeModel(model or "gemini-2.0-flash-exp")
self.model = model or "gemini-2.0-flash-exp"
self.connection_healthy = True
else:
self.client = None
self.connection_healthy = False
elif self.provider == "vllm":
from openai import OpenAI
import httpx
self.api_key = api_key or os.getenv("VLLM_API_KEY", "EMPTY")
self.base_url = base_url or os.getenv("VLLM_BASE_URL", "http://localhost:8000/v1")
self.model = model or os.getenv("VLLM_MODEL", "ibm-granite/granite-4.0-h-1b")
try:
timeout = httpx.Timeout(5.0, connect=2.0)
self.client = OpenAI(api_key=self.api_key, base_url=self.base_url, timeout=timeout)
test_response = self.client.models.list()
self.connection_healthy = True
except Exception as e:
print(f"β οΈ vLLM connection failed: {e}")
print(f" Make sure vLLM server is running at {self.base_url}")
self.client = None
self.connection_healthy = False
else:
raise ValueError(f"Unsupported provider: {provider}. Supported: openai, anthropic, gemini, vllm")
def _create_analysis_prompt(self, active_task: Dict, recent_activity: List[Dict]) -> str:
"""Create the analysis prompt for the LLM."""
if not recent_activity:
return f"""You are FocusFlow, a Duolingo-style accountability buddy for developers.
**Current Task:**
- Title: {active_task.get('title', 'No task')}
- Description: {active_task.get('description', 'No description')}
**Recent Activity:** No file changes detected in the last 60 seconds.
**Your Job:** Analyze the situation and respond with ONE of these verdicts:
1. "On Track" - If there's activity related to the task
2. "Distracted" - If files unrelated to the task are being edited
3. "Idle" - If there's no activity
Respond in JSON format:
{{
"verdict": "On Track" | "Distracted" | "Idle",
"message": "Your encouraging/sassy/nudging message (1-2 sentences, Duolingo style)",
"reasoning": "Brief explanation of your analysis"
}}"""
activity_summary = []
for event in recent_activity[-5:]:
activity_summary.append(
f"- {event['type'].upper()}: {event['filename']}\n Content: {event.get('content', 'N/A')[:200]}"
)
activity_text = "\n".join(activity_summary)
return f"""You are FocusFlow, a Duolingo-style accountability buddy for developers.
**Current Task:**
- Title: {active_task.get('title', 'No task')}
- Description: {active_task.get('description', 'No description')}
**Recent File Activity (last 60 seconds):**
{activity_text}
**Your Job:** Analyze if the file changes are related to the current task.
**Personality Guidelines:**
- "On Track": Be encouraging and specific (e.g., "Great job! I see you're working on the login form!")
- "Distracted": Be playfully sassy (e.g., "Wait, why are you editing random_file.py? We're building a Snake game! π€¨")
- "Idle": Be gently nudging (e.g., "Files won't write themselves. *Hoot hoot.* π¦")
Respond in JSON format:
{{
"verdict": "On Track" | "Distracted" | "Idle",
"message": "Your message (1-2 sentences)",
"reasoning": "Brief explanation"
}}"""
def _call_llm(self, prompt: str) -> Dict:
"""Call the LLM and parse the response."""
try:
if self.provider in ["openai", "vllm"]:
if not self.client:
return {"verdict": "On Track", "message": "API client not initialized", "reasoning": "No client"}
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=300
)
content = response.choices[0].message.content
elif self.provider == "gemini":
if not self.client:
return {"verdict": "On Track", "message": "API client not initialized", "reasoning": "No client"}
response = self.client.generate_content(
prompt,
generation_config={
"temperature": 0.7,
"max_output_tokens": 300,
}
)
content = response.text
else: # anthropic
if not self.client:
return {"verdict": "On Track", "message": "API client not initialized", "reasoning": "No client"}
response = self.client.messages.create(
model=self.model,
max_tokens=300,
temperature=0.7,
messages=[{"role": "user", "content": prompt}]
)
content = response.content[0].text
if not content:
return {"verdict": "On Track", "message": "Empty response from API", "reasoning": "No content"}
# Try to parse JSON from the response
content = content.strip()
if "```json" in content:
content = content.split("```json")[1].split("```")[0].strip()
elif "```" in content:
content = content.split("```")[1].split("```")[0].strip()
result = json.loads(content)
return result
except json.JSONDecodeError:
# Fallback if JSON parsing fails
return {
"verdict": "On Track",
"message": content[:200],
"reasoning": "AI response parsing fallback"
}
except Exception as e:
return {
"verdict": "On Track",
"message": f"Error analyzing activity: {str(e)}",
"reasoning": "Error occurred"
}
def analyze(self, active_task: Optional[Dict], recent_activity: List[Dict]) -> Dict:
"""Analyze current activity and return verdict."""
if not active_task:
return {
"verdict": "Idle",
"message": "No active task selected. Pick a task to get started! π―",
"reasoning": "No active task",
"timestamp": datetime.now().isoformat()
}
if not self.connection_healthy or not self.client:
provider_name = self.provider.upper()
if self.provider == "vllm":
msg = f"β οΈ vLLM server not reachable. Make sure it's running at {self.base_url}"
else:
msg = f"β οΈ {provider_name} API key not configured. Add your API key to enable AI monitoring."
return {
"verdict": "On Track",
"message": msg,
"reasoning": "No connection",
"timestamp": datetime.now().isoformat()
}
prompt = self._create_analysis_prompt(active_task, recent_activity)
result = self._call_llm(prompt)
result["timestamp"] = datetime.now().isoformat()
# Track consecutive idle/distracted states
verdict = result.get("verdict", "On Track")
if verdict == "Idle":
self.idle_count += 1
self.distracted_count = 0
elif verdict == "Distracted":
self.distracted_count += 1
self.idle_count = 0
else:
self.idle_count = 0
self.distracted_count = 0
result["should_alert"] = (self.idle_count >= 2 or self.distracted_count >= 2)
self.last_verdict = verdict
return result
def get_onboarding_tasks(self, project_description: str) -> List[Dict]:
"""Generate micro-tasks from project description."""
if not self.connection_healthy or not self.client:
return []
prompt = f"""You are FocusFlow, an AI project planner.
The user wants to build: "{project_description}"
Break this down into 5-8 concrete, actionable micro-tasks. Each task should be:
- Specific and achievable in 15-30 minutes
- Ordered logically (setup β core features β polish)
- Clearly described
Respond in JSON format:
{{
"tasks": [
{{"title": "Task 1 title", "description": "Detailed description", "estimated_duration": "15 min"}},
{{"title": "Task 2 title", "description": "Detailed description", "estimated_duration": "20 min"}}
]
}}"""
try:
if self.provider in ["openai", "vllm"]:
if not self.client:
return []
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=800
)
content = response.choices[0].message.content
elif self.provider == "gemini":
if not self.client:
return []
response = self.client.generate_content(
prompt,
generation_config={
"temperature": 0.7,
"max_output_tokens": 800,
}
)
content = response.text
else: # anthropic
if not self.client:
return []
response = self.client.messages.create(
model=self.model,
max_tokens=800,
temperature=0.7,
messages=[{"role": "user", "content": prompt}]
)
content = response.content[0].text
if not content:
return []
# Parse JSON
content = content.strip()
if "```json" in content:
content = content.split("```json")[1].split("```")[0].strip()
elif "```" in content:
content = content.split("```")[1].split("```")[0].strip()
result = json.loads(content)
return result.get("tasks", [])
except Exception as e:
print(f"Error generating tasks: {e}")
return []
class MockFocusAgent(FocusAgent):
"""Mock agent for demo mode without API keys. Returns predefined responses."""
def __init__(self):
"""Initialize mock agent without any API dependencies."""
self.provider = "mock"
self.last_verdict = None
self.idle_count = 0
self.distracted_count = 0
self.connection_healthy = True
self.client = None
self.api_key = None
self.check_counter = 0
self.verdicts_cycle = ["On Track", "On Track", "Distracted", "On Track", "Idle"]
self.messages = {
"On Track": [
"Great work! You're making solid progress! π―",
"Keep it up! I see you're focused on the task. πͺ",
"Looking good! You're on the right track! β¨",
"Nice! Your workflow is looking productive! π"
],
"Distracted": [
"Wait, what are you working on? That doesn't look like the task! π€¨",
"Hmm, spotted some wandering there. Let's refocus! π",
"Getting a bit sidetracked? Back to the task! π―",
"I see you there! Time to get back on track! π¦"
],
"Idle": [
"Files won't write themselves. *Hoot hoot.* π¦",
"Hey! Time to make some progress! β°",
"No activity detected. Let's get moving! π€",
"Your task is waiting! Let's code! π₯"
]
}
def analyze(self, active_task: Optional[Dict], recent_activity: List[Dict]) -> Dict:
"""Return mock analysis results."""
if not active_task:
return {
"verdict": "Idle",
"message": "No active task selected. Pick a task to get started! π―",
"reasoning": "No active task (mock mode)",
"timestamp": datetime.now().isoformat()
}
# Cycle through verdicts
verdict = self.verdicts_cycle[self.check_counter % len(self.verdicts_cycle)]
self.check_counter += 1
# Get message for this verdict
import random
message = random.choice(self.messages[verdict])
# Track consecutive states
if verdict == "Idle":
self.idle_count += 1
self.distracted_count = 0
elif verdict == "Distracted":
self.distracted_count += 1
self.idle_count = 0
else:
self.idle_count = 0
self.distracted_count = 0
self.last_verdict = verdict
return {
"verdict": verdict,
"message": message,
"reasoning": f"Mock analysis for task: {active_task.get('title', 'Unknown')}",
"timestamp": datetime.now().isoformat(),
"should_alert": (self.idle_count >= 2 or self.distracted_count >= 2)
}
def get_onboarding_tasks(self, project_description: str) -> List[Dict]:
"""Generate mock tasks based on project description."""
# Simple keyword-based task generation
description_lower = project_description.lower()
if any(word in description_lower for word in ["web", "website", "app", "frontend"]):
return [
{"title": "Set up project structure", "description": "Create folders and initial files", "estimated_duration": "15 min"},
{"title": "Design UI mockup", "description": "Sketch out the main interface", "estimated_duration": "20 min"},
{"title": "Build homepage", "description": "Create the landing page HTML/CSS", "estimated_duration": "30 min"},
{"title": "Add navigation", "description": "Implement menu and routing", "estimated_duration": "25 min"},
{"title": "Connect backend", "description": "Set up API integration", "estimated_duration": "30 min"},
{"title": "Test and debug", "description": "Fix bugs and test functionality", "estimated_duration": "20 min"}
]
elif any(word in description_lower for word in ["api", "backend", "server"]):
return [
{"title": "Set up project structure", "description": "Initialize project and dependencies", "estimated_duration": "15 min"},
{"title": "Design database schema", "description": "Plan data models and relationships", "estimated_duration": "20 min"},
{"title": "Create API endpoints", "description": "Build REST routes", "estimated_duration": "30 min"},
{"title": "Add authentication", "description": "Implement user auth", "estimated_duration": "25 min"},
{"title": "Write tests", "description": "Create unit and integration tests", "estimated_duration": "30 min"}
]
else:
# Generic tasks
return [
{"title": "Research and planning", "description": "Gather requirements and plan approach", "estimated_duration": "20 min"},
{"title": "Set up environment", "description": "Install dependencies and tools", "estimated_duration": "15 min"},
{"title": "Build core feature #1", "description": "Implement main functionality", "estimated_duration": "30 min"},
{"title": "Build core feature #2", "description": "Add secondary features", "estimated_duration": "25 min"},
{"title": "Testing and debugging", "description": "Test and fix issues", "estimated_duration": "20 min"},
{"title": "Documentation", "description": "Write README and comments", "estimated_duration": "15 min"}
]
|