File size: 56,150 Bytes
60ac2eb 0510038 60ac2eb d71b95a 0510038 60ac2eb 0510038 b304992 0510038 322f5cd ffe0724 0510038 322f5cd 0510038 b304992 0510038 7501b6e 7e91f1d e0abc68 7501b6e e0abc68 7501b6e e0abc68 7501b6e 7e91f1d 0510038 1bd23ce 0510038 1bd23ce ff97939 b304992 1bd23ce ff97939 1bd23ce b304992 ff97939 0510038 ff97939 322f5cd d71b95a 1bd23ce 0510038 d71b95a 0510038 06e7156 0510038 96007fc 0510038 96007fc 0510038 96007fc 0510038 06e7156 0510038 06e7156 0510038 06e7156 0510038 06e7156 0510038 d71b95a 0510038 d71b95a 0510038 d71b95a 0510038 d71b95a e0abc68 d71b95a 7e91f1d d71b95a e0abc68 7501b6e e0abc68 d71b95a 7501b6e 0510038 d71b95a 0510038 d71b95a 0510038 d71b95a 0510038 b304992 0510038 d71b95a 0510038 d71b95a 0510038 60ac2eb 7e91f1d 60ac2eb 7e91f1d 0510038 7e91f1d 0510038 60ac2eb a58468b 60ac2eb a58468b 0510038 60ac2eb a58468b 60ac2eb a58468b 0510038 a58468b 0510038 ffe0724 f2ae1a5 ffe0724 f2ae1a5 ffe0724 f2ae1a5 ffe0724 0510038 60ac2eb 0510038 0fb81b1 0510038 0fb81b1 06e7156 b304992 06e7156 ffe0724 06e7156 0510038 60ac2eb 0510038 7e91f1d 7501b6e 7e91f1d 7501b6e 0510038 7e91f1d 7501b6e 7e91f1d e0abc68 7501b6e 7e91f1d 0510038 7e91f1d 7501b6e 0510038 7e91f1d 7501b6e 0510038 7501b6e 0510038 7501b6e 0510038 7501b6e 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 7e91f1d 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 a58468b 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 60ac2eb 0510038 a58468b 0510038 60ac2eb 0510038 ffe0724 0510038 60ac2eb 0510038 ffe0724 0510038 90c143f 0510038 90c143f 60ac2eb 0510038 60ac2eb ff97939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 |
"""
Lineage Graph Accelerator - Hugging Face Space
A Gradio-based AI agent for extracting and visualizing data lineage from various sources.
Built for the Gradio Agents & MCP Hackathon - Winter 2025
"""
import gradio as gr
import json
import os
import requests
from typing import Optional, Tuple, Dict, Any, List
from datetime import datetime
# Import exporters
try:
from exporters import (
LineageGraph, LineageNode, LineageEdge,
OpenLineageExporter, CollibraExporter, PurviewExporter, AlationExporter, AtlasExporter
)
EXPORTERS_AVAILABLE = True
except ImportError:
EXPORTERS_AVAILABLE = False
# Import Google Gemini for agentic chatbot
try:
import google.generativeai as genai
GEMINI_AVAILABLE = True
except ImportError:
GEMINI_AVAILABLE = False
# ============================================================================
# Constants and Configuration
# ============================================================================
SAMPLE_FILES = {
"simple": "sample_metadata.json",
"dbt": "dbt_manifest_sample.json",
"airflow": "airflow_dag_sample.json",
"sql": "sql_ddl_sample.sql",
"warehouse": "warehouse_lineage_sample.json",
"etl": "etl_pipeline_sample.json",
"complex": "complex_lineage_demo.json",
"api": "sample_api_metadata.json",
"bigquery": "sample_bigquery.sql"
}
EXPORT_FORMATS = ["OpenLineage", "Collibra", "Purview", "Alation", "Atlas"]
# Preset MCP Servers on HuggingFace that can provide metadata
MCP_PRESETS = {
"local_demo": {
"name": "Local Demo MCP (Built-in)",
"url": "local://demo",
"schema_url": "local://demo/schema",
"description": "Built-in demo MCP server that provides sample lineage metadata for testing",
"tools": ["get_sample_lineage", "get_dbt_metadata", "get_airflow_dag", "get_warehouse_schema"]
},
"mcp_tools": {
"name": "MCP Tools by abidlabs",
"url": "https://abidlabs-mcp-tools.hf.space/gradio_api/mcp/sse",
"schema_url": "https://abidlabs-mcp-tools.hf.space/gradio_api/mcp/schema",
"description": "Demo MCP server with utility tools for testing integration",
"tools": ["prime_factors", "generate_cheetah_image", "image_orientation"]
},
"huggingface_mcp": {
"name": "HuggingFace MCP by dylanebert",
"url": "https://dylanebert-huggingface-mcp.hf.space/gradio_api/mcp/sse",
"schema_url": "https://dylanebert-huggingface-mcp.hf.space/gradio_api/mcp/schema",
"description": "Search and explore HuggingFace models, datasets, and spaces",
"tools": ["search_models", "search_datasets", "get_model_card"]
},
"ragmint": {
"name": "Ragmint RAG Pipeline",
"url": "https://mcp-1st-birthday-ragmint-mcp-server.hf.space/gradio_api/mcp/sse",
"schema_url": "https://mcp-1st-birthday-ragmint-mcp-server.hf.space/gradio_api/mcp/schema",
"description": "RAG pipeline optimization and document retrieval",
"tools": ["optimize_rag", "retrieve_documents"]
},
"web_search": {
"name": "Web Search MCP",
"url": "https://agents-mcp-hackathon-search-web-mcp-server.hf.space/gradio_api/mcp/sse",
"schema_url": "https://agents-mcp-hackathon-search-web-mcp-server.hf.space/gradio_api/mcp/schema",
"description": "Search the web for data and documentation",
"tools": ["search_web", "fetch_page"]
}
}
# ============================================================================
# Local Demo MCP Server (Built-in)
# ============================================================================
# Sample metadata that the local MCP server can provide
LOCAL_MCP_METADATA = {
"ecommerce_pipeline": {
"name": "E-commerce Data Pipeline",
"nodes": [
{"id": "raw_orders", "type": "source", "name": "Raw Orders (PostgreSQL)"},
{"id": "raw_customers", "type": "source", "name": "Raw Customers (PostgreSQL)"},
{"id": "raw_products", "type": "source", "name": "Raw Products (API)"},
{"id": "stg_orders", "type": "model", "name": "Staging Orders"},
{"id": "stg_customers", "type": "model", "name": "Staging Customers"},
{"id": "stg_products", "type": "model", "name": "Staging Products"},
{"id": "dim_customers", "type": "dimension", "name": "Dim Customers"},
{"id": "dim_products", "type": "dimension", "name": "Dim Products"},
{"id": "fact_orders", "type": "fact", "name": "Fact Orders"},
{"id": "mart_sales", "type": "table", "name": "Sales Mart"},
{"id": "report_daily", "type": "report", "name": "Daily Sales Report"}
],
"edges": [
{"from": "raw_orders", "to": "stg_orders"},
{"from": "raw_customers", "to": "stg_customers"},
{"from": "raw_products", "to": "stg_products"},
{"from": "stg_customers", "to": "dim_customers"},
{"from": "stg_products", "to": "dim_products"},
{"from": "stg_orders", "to": "fact_orders"},
{"from": "dim_customers", "to": "fact_orders"},
{"from": "dim_products", "to": "fact_orders"},
{"from": "fact_orders", "to": "mart_sales"},
{"from": "mart_sales", "to": "report_daily"}
]
},
"ml_pipeline": {
"name": "ML Feature Pipeline",
"nodes": [
{"id": "raw_events", "type": "source", "name": "Event Stream (Kafka)"},
{"id": "raw_user_data", "type": "source", "name": "User Data (S3)"},
{"id": "feature_eng", "type": "model", "name": "Feature Engineering"},
{"id": "feature_store", "type": "table", "name": "Feature Store"},
{"id": "training_data", "type": "table", "name": "Training Dataset"},
{"id": "model_output", "type": "destination", "name": "Model Predictions"}
],
"edges": [
{"from": "raw_events", "to": "feature_eng"},
{"from": "raw_user_data", "to": "feature_eng"},
{"from": "feature_eng", "to": "feature_store"},
{"from": "feature_store", "to": "training_data"},
{"from": "training_data", "to": "model_output"}
]
},
"data_warehouse": {
"name": "Data Warehouse Schema",
"nodes": [
{"id": "src_crm", "type": "source", "name": "CRM System"},
{"id": "src_erp", "type": "source", "name": "ERP System"},
{"id": "src_web", "type": "source", "name": "Web Analytics"},
{"id": "landing_crm", "type": "table", "name": "Landing CRM"},
{"id": "landing_erp", "type": "table", "name": "Landing ERP"},
{"id": "landing_web", "type": "table", "name": "Landing Web"},
{"id": "dwh_customers", "type": "dimension", "name": "DWH Customers"},
{"id": "dwh_transactions", "type": "fact", "name": "DWH Transactions"},
{"id": "bi_dashboard", "type": "report", "name": "BI Dashboard"}
],
"edges": [
{"from": "src_crm", "to": "landing_crm"},
{"from": "src_erp", "to": "landing_erp"},
{"from": "src_web", "to": "landing_web"},
{"from": "landing_crm", "to": "dwh_customers"},
{"from": "landing_erp", "to": "dwh_transactions"},
{"from": "landing_web", "to": "dwh_transactions"},
{"from": "dwh_customers", "to": "dwh_transactions"},
{"from": "dwh_transactions", "to": "bi_dashboard"}
]
}
}
def local_mcp_get_metadata(tool_name: str, query: str = "") -> Dict[str, Any]:
"""Simulate a local MCP server that returns sample metadata."""
if tool_name == "get_sample_lineage" or tool_name == "search":
# Return a random or query-matched sample
if "ecommerce" in query.lower() or "sales" in query.lower():
return LOCAL_MCP_METADATA["ecommerce_pipeline"]
elif "ml" in query.lower() or "feature" in query.lower():
return LOCAL_MCP_METADATA["ml_pipeline"]
elif "warehouse" in query.lower() or "dwh" in query.lower():
return LOCAL_MCP_METADATA["data_warehouse"]
else:
# Default to ecommerce
return LOCAL_MCP_METADATA["ecommerce_pipeline"]
elif tool_name == "get_dbt_metadata":
return LOCAL_MCP_METADATA["ecommerce_pipeline"]
elif tool_name == "get_airflow_dag":
return LOCAL_MCP_METADATA["ml_pipeline"]
elif tool_name == "get_warehouse_schema":
return LOCAL_MCP_METADATA["data_warehouse"]
elif tool_name == "list_datasets":
return {"datasets": list(LOCAL_MCP_METADATA.keys())}
else:
return LOCAL_MCP_METADATA["ecommerce_pipeline"]
def is_local_mcp(url: str) -> bool:
"""Check if the URL is for the local demo MCP server."""
return url and url.startswith("local://")
def call_local_mcp(tool_name: str, query: str = "") -> Tuple[str, str]:
"""Call the local MCP server and return metadata as JSON string."""
metadata = local_mcp_get_metadata(tool_name, query)
return json.dumps(metadata, indent=2), f"Fetched '{metadata.get('name', 'lineage')}' from Local Demo MCP"
# ============================================================================
# Mermaid Rendering
# ============================================================================
import base64
import urllib.parse
def render_mermaid(viz_code: str) -> str:
"""Render mermaid diagram using mermaid.ink service (renders as SVG image)."""
# Encode the mermaid code for the URL
# mermaid.ink accepts base64 encoded diagram
encoded = base64.urlsafe_b64encode(viz_code.encode('utf-8')).decode('utf-8')
# Create the mermaid.ink URL for SVG rendering
img_url = f"https://mermaid.ink/svg/{encoded}"
# PNG version for download
png_url = f"https://mermaid.ink/img/{encoded}"
# Also create a link to the live editor for users who want to modify
editor_url = f"https://mermaid.live/edit#base64:{base64.b64encode(viz_code.encode('utf-8')).decode('utf-8')}"
html = f'''
<div style="background: white; padding: 20px; border-radius: 8px; min-height: 200px;">
<div style="overflow: auto; max-height: 500px; border: 1px solid #e0e0e0; border-radius: 4px; padding: 10px;">
<img id="lineage-graph" src="{img_url}" alt="Lineage Graph" style="max-width: 100%; height: auto; cursor: zoom-in;" onclick="this.style.maxWidth = this.style.maxWidth === 'none' ? '100%' : 'none'; this.style.cursor = this.style.cursor === 'zoom-in' ? 'zoom-out' : 'zoom-in';" />
</div>
<div style="margin-top: 12px; display: flex; gap: 16px; flex-wrap: wrap; align-items: center;">
<a href="{editor_url}" target="_blank" style="color: #7c3aed; text-decoration: none; font-size: 13px;">
Edit in Mermaid Live
</a>
<a href="{png_url}" download="lineage_graph.png" style="color: #2563eb; text-decoration: none; font-size: 13px;">
Download PNG
</a>
<a href="{img_url}" download="lineage_graph.svg" style="color: #059669; text-decoration: none; font-size: 13px;">
Download SVG
</a>
<span style="color: #888; font-size: 12px; margin-left: auto;">Click graph to zoom</span>
</div>
</div>
'''
return html
def render_mermaid_code(viz_code: str) -> str:
"""Return the raw mermaid code for display."""
return viz_code
# ============================================================================
# Lineage Parsing and Visualization Generation
# ============================================================================
def parse_metadata_to_graph(metadata_text: str, source_type: str) -> Tuple[LineageGraph, str]:
"""Parse metadata text into a LineageGraph structure."""
try:
# Try to parse as JSON first
if metadata_text.strip().startswith('{') or metadata_text.strip().startswith('['):
data = json.loads(metadata_text)
else:
# For SQL or other text formats, create a simple structure
data = {"raw_content": metadata_text, "source_type": source_type}
graph = LineageGraph(name=f"Lineage from {source_type}")
# Handle different formats
if "lineage_graph" in data:
# Complex lineage demo format
lg = data["lineage_graph"]
for node_data in lg.get("nodes", []):
node = LineageNode(
id=node_data.get("id"),
name=node_data.get("name"),
type=node_data.get("type", "table"),
category=node_data.get("category"),
description=node_data.get("description"),
metadata=node_data.get("metadata"),
tags=node_data.get("tags")
)
graph.add_node(node)
for edge_data in lg.get("edges", []):
edge = LineageEdge(
source=edge_data.get("from"),
target=edge_data.get("to"),
type=edge_data.get("type", "transform")
)
graph.add_edge(edge)
elif "nodes" in data and "edges" in data:
# Simple node/edge format
for node_data in data.get("nodes", []):
node = LineageNode(
id=node_data.get("id"),
name=node_data.get("name", node_data.get("id")),
type=node_data.get("type", "table")
)
graph.add_node(node)
for edge_data in data.get("edges", []):
edge = LineageEdge(
source=edge_data.get("from"),
target=edge_data.get("to"),
type=edge_data.get("type", "transform")
)
graph.add_edge(edge)
elif "nodes" in data:
# dbt manifest format
for node_id, node_data in data.get("nodes", {}).items():
node = LineageNode(
id=node_id,
name=node_data.get("name", node_id.split(".")[-1]),
type=node_data.get("resource_type", "model"),
schema=node_data.get("schema"),
database=node_data.get("database"),
description=node_data.get("description")
)
graph.add_node(node)
# Add edges from depends_on
deps = node_data.get("depends_on", {}).get("nodes", [])
for dep in deps:
edge = LineageEdge(source=dep, target=node_id, type="transform")
graph.add_edge(edge)
elif "tasks" in data:
# Airflow DAG format
for task in data.get("tasks", []):
node = LineageNode(
id=task.get("task_id"),
name=task.get("task_id"),
type="task",
description=task.get("description")
)
graph.add_node(node)
# Add edges from upstream dependencies
for dep in task.get("upstream_dependencies", []):
edge = LineageEdge(source=dep, target=task.get("task_id"), type="dependency")
graph.add_edge(edge)
elif "lineage" in data:
# Warehouse lineage format
lineage = data.get("lineage", {})
for dataset in lineage.get("datasets", []):
node = LineageNode(
id=dataset.get("id"),
name=dataset.get("name", dataset.get("id")),
type=dataset.get("type", "table"),
schema=dataset.get("schema"),
database=dataset.get("database"),
description=dataset.get("description"),
owner=dataset.get("owner"),
tags=dataset.get("tags")
)
graph.add_node(node)
for rel in lineage.get("relationships", []):
edge = LineageEdge(
source=rel.get("source"),
target=rel.get("target"),
type=rel.get("type", "transform"),
job_name=rel.get("job")
)
graph.add_edge(edge)
elif "stages" in data:
# ETL pipeline format
for stage in data.get("stages", []):
for step in stage.get("steps", []):
node = LineageNode(
id=step.get("id"),
name=step.get("name", step.get("id")),
type="step",
category=stage.get("id"),
description=step.get("description") or step.get("logic")
)
graph.add_node(node)
# Add edges from inputs
for inp in step.get("inputs", []):
edge = LineageEdge(source=inp, target=step.get("id"), type="transform")
graph.add_edge(edge)
else:
# Fallback: create sample nodes
graph.add_node(LineageNode(id="source", name="Source", type="source"))
graph.add_node(LineageNode(id="target", name="Target", type="table"))
graph.add_edge(LineageEdge(source="source", target="target", type="transform"))
summary = f"Parsed {len(graph.nodes)} nodes and {len(graph.edges)} relationships from {source_type}"
return graph, summary
except json.JSONDecodeError as e:
# Handle SQL or plain text
graph = LineageGraph(name=f"Lineage from {source_type}")
graph.add_node(LineageNode(id="input", name="Input Data", type="source"))
graph.add_node(LineageNode(id="output", name="Output Data", type="table"))
graph.add_edge(LineageEdge(source="input", target="output", type="transform"))
return graph, f"Created placeholder lineage (could not parse as JSON: {str(e)[:50]})"
except Exception as e:
graph = LineageGraph(name="Error")
return graph, f"Error parsing metadata: {str(e)}"
def sanitize_mermaid_text(text: str) -> str:
"""Sanitize text for use in Mermaid diagrams by escaping special characters."""
if not text:
return "Unknown"
# Replace characters that conflict with Mermaid syntax
# Parentheses conflict with node shapes, brackets with labels
text = text.replace("(", " - ").replace(")", "")
text = text.replace("[", " ").replace("]", " ")
text = text.replace("{", " ").replace("}", " ")
text = text.replace('"', "'")
text = text.replace("<", "").replace(">", "")
text = text.replace("#", "")
return text.strip()
def generate_mermaid_from_graph(graph: LineageGraph) -> str:
"""Generate Mermaid diagram code from a LineageGraph."""
if not graph.nodes:
return "graph TD\n A[No data to display]"
lines = [
"%%{init: {'theme': 'base', 'themeVariables': {'fontSize': '12px', 'fontFamily': 'arial', 'primaryColor': '#e8f5e9', 'primaryBorderColor': '#4caf50', 'lineColor': '#666'}}}%%",
"graph TD"
]
# Group nodes by category for subgraphs
categories = {}
for node in graph.nodes:
cat = node.category or "default"
if cat not in categories:
categories[cat] = []
categories[cat].append(node)
# Generate nodes with styling - compact with rounded corners and subtle borders
node_styles = {
"source": "fill:#e3f2fd,stroke:#1976d2,stroke-width:1px,rx:5,ry:5",
"external_api": "fill:#e3f2fd,stroke:#1976d2,stroke-width:1px,rx:5,ry:5",
"table": "fill:#e8f5e9,stroke:#388e3c,stroke-width:1px,rx:5,ry:5",
"view": "fill:#f3e5f5,stroke:#7b1fa2,stroke-width:1px,rx:5,ry:5",
"model": "fill:#fff3e0,stroke:#f57c00,stroke-width:1px,rx:5,ry:5",
"report": "fill:#fce4ec,stroke:#c2185b,stroke-width:1px,rx:5,ry:5",
"dimension": "fill:#e0f7fa,stroke:#0097a7,stroke-width:1px,rx:5,ry:5",
"fact": "fill:#fff8e1,stroke:#ffa000,stroke-width:1px,rx:5,ry:5",
"destination": "fill:#ffebee,stroke:#d32f2f,stroke-width:1px,rx:5,ry:5",
"task": "fill:#fafafa,stroke:#616161,stroke-width:1px,rx:5,ry:5"
}
# Add subgraphs for categories
if len(categories) > 1:
for cat, nodes in categories.items():
if cat != "default":
lines.append(f" subgraph {sanitize_mermaid_text(cat.replace('_', ' ').title())}")
for node in nodes:
safe_name = sanitize_mermaid_text(node.name)
shape = f"[{safe_name}]" if node.type in ["table", "model"] else f"({safe_name})"
lines.append(f" {node.id}{shape}")
lines.append(" end")
else:
for node in nodes:
safe_name = sanitize_mermaid_text(node.name)
shape = f"[{safe_name}]" if node.type in ["table", "model"] else f"({safe_name})"
lines.append(f" {node.id}{shape}")
else:
for node in graph.nodes:
safe_name = sanitize_mermaid_text(node.name)
shape = f"[{safe_name}]" if node.type in ["table", "model"] else f"({safe_name})"
lines.append(f" {node.id}{shape}")
# Add edges
edge_labels = {
"transform": "-->",
"reference": "-.->",
"ingest": "-->",
"export": "-->",
"join": "-->",
"aggregate": "-->",
"dependency": "-->"
}
for edge in graph.edges:
arrow = edge_labels.get(edge.type, "-->")
if edge.type and edge.type not in ["transform", "dependency"]:
lines.append(f" {edge.source} {arrow}|{edge.type}| {edge.target}")
else:
lines.append(f" {edge.source} {arrow} {edge.target}")
# Add styling
for node in graph.nodes:
style = node_styles.get(node.type, "fill:#f5f5f5")
lines.append(f" style {node.id} {style}")
return "\n".join(lines)
# ============================================================================
# MCP Server Integration
# ============================================================================
def send_to_mcp(server_url: str, api_key: str, metadata_text: str, source_type: str, viz_format: str) -> Tuple[str, str]:
"""Send metadata to an external MCP server and return visualization + summary."""
if not server_url:
return "", "No MCP server URL configured."
try:
payload = {
"metadata": metadata_text,
"source_type": source_type,
"viz_format": viz_format,
}
headers = {"Content-Type": "application/json"}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
resp = requests.post(server_url, json=payload, headers=headers, timeout=30)
if 200 <= resp.status_code < 300:
data = resp.json()
viz = data.get("visualization") or data.get("viz") or data.get("mermaid", "")
summary = data.get("summary", "Processed by MCP server.")
if viz:
return render_mermaid(viz), summary
return "", summary
else:
return "", f"MCP server returned status {resp.status_code}: {resp.text[:200]}"
except Exception as e:
return "", f"Error contacting MCP server: {e}"
def test_mcp_connection(server_url: str, api_key: str) -> str:
"""Health-check to MCP server by fetching schema."""
if not server_url:
return "No MCP server URL configured."
# Handle local demo MCP server
if is_local_mcp(server_url):
tools = MCP_PRESETS.get("local_demo", {}).get("tools", [])
return f"Local Demo MCP ready! {len(tools)} tools available: {', '.join(tools)}"
try:
headers = {}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
# For Gradio MCP servers, the schema endpoint is the best test
schema_url = server_url.replace("/sse", "/schema").replace("/mcp/mcp", "/mcp")
try:
resp = requests.get(schema_url, headers=headers, timeout=15)
if resp.status_code == 200:
try:
schema = resp.json()
tool_count = len(schema) if isinstance(schema, dict) else 0
return f"Connected! Found {tool_count} tools available."
except:
return f"Connected to MCP server: {resp.status_code} OK"
except requests.exceptions.RequestException:
pass
# Fallback: try base URL
base_url = server_url.replace("/gradio_api/mcp/sse", "")
try:
resp = requests.get(base_url, headers=headers, timeout=10)
if resp.status_code == 200:
return f"Server reachable (status {resp.status_code})"
except:
pass
return "MCP server may be sleeping. Try again in a moment."
except Exception as e:
return f"Error contacting MCP server: {e}"
def get_preset_url(preset_key: str) -> str:
"""Get the URL for a preset MCP server."""
if preset_key in MCP_PRESETS:
return MCP_PRESETS[preset_key]["url"]
return ""
def get_preset_description(preset_key: str) -> str:
"""Get description and available tools for a preset MCP server."""
if preset_key in MCP_PRESETS:
preset = MCP_PRESETS[preset_key]
tools = ", ".join(preset.get("tools", []))
return f"{preset['description']}\n\nAvailable tools: {tools}"
return ""
def fetch_metadata_from_mcp(server_url: str, api_key: str, query: str) -> Tuple[str, str]:
"""Fetch metadata from an MCP server and return it for lineage visualization."""
if not server_url:
return "", "Please select or enter an MCP server URL first."
try:
headers = {"Content-Type": "application/json"}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
# For Gradio MCP servers, try to call a tool
# The standard MCP protocol uses JSON-RPC
payload = {
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "search",
"arguments": {"query": query}
},
"id": 1
}
# Try the SSE endpoint first (for Gradio MCP)
base_url = server_url.replace("/sse", "")
resp = requests.post(base_url, json=payload, headers=headers, timeout=30)
if resp.status_code == 200:
try:
data = resp.json()
# Format the response as lineage-compatible JSON
if isinstance(data, dict):
result = data.get("result", data)
# Create a simple lineage from the response
lineage_data = {
"nodes": [
{"id": "mcp_source", "type": "source", "name": f"MCP: {query}"},
{"id": "mcp_result", "type": "table", "name": "Query Result"}
],
"edges": [
{"from": "mcp_source", "to": "mcp_result"}
],
"metadata": result
}
return json.dumps(lineage_data, indent=2), f"Fetched metadata from MCP server for query: {query}"
except json.JSONDecodeError:
pass
# Fallback: create sample lineage showing the MCP connection
sample_lineage = {
"nodes": [
{"id": "mcp_server", "type": "source", "name": server_url.split("/")[2]},
{"id": "query", "type": "model", "name": f"Query: {query[:30]}..."},
{"id": "result", "type": "table", "name": "MCP Result"}
],
"edges": [
{"from": "mcp_server", "to": "query"},
{"from": "query", "to": "result"}
]
}
return json.dumps(sample_lineage, indent=2), f"Created lineage template for MCP query. Connect to the MCP server to fetch real metadata."
except Exception as e:
return "", f"Error fetching from MCP server: {str(e)}"
# ============================================================================
# Export Functions
# ============================================================================
def export_lineage(metadata_text: str, source_type: str, export_format: str) -> Tuple[str, str]:
"""Export lineage to the specified data catalog format."""
if not EXPORTERS_AVAILABLE:
return "", "Export functionality not available. Please install the exporters module."
try:
graph, _ = parse_metadata_to_graph(metadata_text, source_type)
if export_format == "OpenLineage":
exporter = OpenLineageExporter(graph)
elif export_format == "Collibra":
exporter = CollibraExporter(graph)
elif export_format == "Purview":
exporter = PurviewExporter(graph)
elif export_format == "Alation":
exporter = AlationExporter(graph)
elif export_format == "Atlas":
exporter = AtlasExporter(graph)
else:
return "", f"Unknown export format: {export_format}"
exported_content = exporter.export()
filename = f"lineage_export_{export_format.lower()}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
return exported_content, f"Exported to {export_format} format. Download the file below."
except Exception as e:
return "", f"Export error: {str(e)}"
# ============================================================================
# Sample Data Loading
# ============================================================================
def load_sample(sample_type: str) -> str:
"""Load a sample file."""
filename = SAMPLE_FILES.get(sample_type)
if not filename:
return json.dumps({"error": f"Unknown sample type: {sample_type}"})
filepath = os.path.join(os.path.dirname(__file__), "samples", filename)
try:
with open(filepath, "r") as f:
return f.read()
except Exception as e:
return json.dumps({"error": f"Could not load sample: {str(e)}"})
# ============================================================================
# Main Extraction Handlers
# ============================================================================
def extract_lineage_from_text(
metadata_text: str,
source_type: str,
visualization_format: str,
use_mcp: bool = False,
mcp_url: str = "",
mcp_query: str = ""
) -> Tuple[str, str]:
"""Extract lineage from provided metadata text, optionally using MCP server."""
# If MCP is enabled and we have a URL, fetch metadata from MCP
if use_mcp and mcp_url:
if is_local_mcp(mcp_url):
# Use local demo MCP server
mcp_metadata, mcp_summary = call_local_mcp("get_sample_lineage", mcp_query or source_type)
if mcp_metadata:
# Parse the MCP metadata
if EXPORTERS_AVAILABLE:
graph, _ = parse_metadata_to_graph(mcp_metadata, "MCP Response")
mermaid_code = generate_mermaid_from_graph(graph)
return render_mermaid(mermaid_code), f"[MCP] {mcp_summary}"
else:
# External MCP - would need proper MCP client implementation
return "", f"External MCP servers require proper MCP client. Use Local Demo MCP for testing."
# Local processing - use provided metadata
if not metadata_text.strip():
return "", "Please provide metadata content or enable MCP to fetch sample data."
if EXPORTERS_AVAILABLE:
graph, summary = parse_metadata_to_graph(metadata_text, source_type)
mermaid_code = generate_mermaid_from_graph(graph)
return render_mermaid(mermaid_code), summary
else:
# Fallback stub
viz = "graph TD\n A[Sample Node] --> B[Output Node]"
return render_mermaid(viz), f"Processed {source_type} metadata."
def extract_lineage_from_bigquery(
project_id: str,
query: str,
api_key: str,
visualization_format: str
) -> Tuple[str, str]:
"""Extract lineage from BigQuery (local processing)."""
# Local stub - would integrate with BigQuery API in production
viz = f"""graph TD
subgraph BigQuery Project: {project_id or 'your-project'}
A[Source Tables] --> B[Query Execution]
B --> C[Destination Table]
end
style A fill:#e1f5fe
style B fill:#fff3e0
style C fill:#e8f5e9"""
return render_mermaid(viz), f"BigQuery lineage from project: {project_id or 'not specified'}"
def extract_lineage_from_url(
url: str,
visualization_format: str
) -> Tuple[str, str]:
"""Extract lineage from URL/API endpoint (local processing)."""
# Try to fetch the URL
if url:
try:
resp = requests.get(url, timeout=10)
if resp.status_code == 200:
return extract_lineage_from_text(resp.text, "API Response", visualization_format)
except Exception:
pass
viz = "graph TD\n A[API Source] --> B[Data Pipeline] --> C[Output]"
return render_mermaid(viz), f"Lineage from URL: {url or 'not specified'}"
# ============================================================================
# Gemini Agentic Chatbot
# ============================================================================
LINEAGE_AGENT_PROMPT = """You are a Data Lineage Assistant powered by the Lineage Graph Accelerator tool.
You help users understand, extract, and visualize data lineage from various sources.
Your capabilities:
1. **Extract Lineage**: Parse metadata from dbt manifests, Airflow DAGs, SQL DDL, and custom JSON
2. **Explain Lineage**: Help users understand data flow and dependencies
3. **Generate Metadata**: Create lineage JSON from natural language descriptions
4. **Export Guidance**: Advise on exporting to data catalogs (OpenLineage, Collibra, Purview, Alation, Atlas)
When users describe their data pipeline, generate valid JSON lineage in this format:
```json
{
"nodes": [
{"id": "unique_id", "type": "source|table|model|view|report", "name": "Display Name"}
],
"edges": [
{"from": "source_id", "to": "target_id"}
]
}
```
Node types: source, table, model, view, report, dimension, fact, destination, task
Be helpful, concise, and always offer to generate lineage JSON when users describe data flows.
If the user provides metadata or describes a pipeline, generate the JSON they can paste into the tool."""
def init_gemini(api_key: str) -> bool:
"""Initialize Gemini with the provided API key."""
if not GEMINI_AVAILABLE:
return False
if not api_key:
return False
try:
genai.configure(api_key=api_key)
return True
except Exception:
return False
def chat_with_gemini(
message: str,
history: List[Dict[str, str]],
api_key: str
) -> Tuple[List[Dict[str, str]], str]:
"""Chat with Gemini about data lineage."""
if not GEMINI_AVAILABLE:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "Google Gemini is not available. Please install google-generativeai package."}
], ""
if not api_key:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "Please enter your Google Gemini API key to use the chatbot. You can get one at https://makersuite.google.com/app/apikey"}
], ""
try:
genai.configure(api_key=api_key)
# Use models/gemini-2.0-flash-001 which is the correct model path
model = genai.GenerativeModel('models/gemini-2.0-flash-001')
# Build context from history
context_parts = [LINEAGE_AGENT_PROMPT, "\n\nConversation history:"]
for msg in history[-6:]: # Keep last 6 messages for context
role = "User" if msg.get("role") == "user" else "Assistant"
context_parts.append(f"{role}: {msg.get('content', '')}")
context_parts.append(f"\nUser: {message}\nAssistant:")
# Generate response
full_prompt = "\n".join(context_parts)
response = model.generate_content(full_prompt)
assistant_message = response.text
# Extract any JSON from the response for the metadata field
extracted_json = ""
if "```json" in assistant_message:
try:
json_start = assistant_message.find("```json") + 7
json_end = assistant_message.find("```", json_start)
if json_end > json_start:
extracted_json = assistant_message[json_start:json_end].strip()
except Exception:
pass
new_history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": assistant_message}
]
return new_history, extracted_json
except Exception as e:
error_msg = f"Error communicating with Gemini: {str(e)}"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_msg}
], ""
def use_generated_json(json_text: str) -> Tuple[str, str, str]:
"""Use the generated JSON in the lineage extractor."""
if not json_text.strip():
return "", "", "No JSON to use. Ask the chatbot to generate lineage JSON first."
try:
# Validate JSON
json.loads(json_text)
# Return the JSON to be used in the main tab
return json_text, "Custom JSON", "JSON copied to metadata input. Switch to 'Text/File Metadata' tab and click 'Extract Lineage'."
except json.JSONDecodeError as e:
return "", "", f"Invalid JSON: {str(e)}"
# ============================================================================
# Gradio UI
# ============================================================================
# Build the Gradio interface (Gradio 6 compatible)
with gr.Blocks(
title="Lineage Graph Accelerator",
fill_height=True
) as demo:
# Header Banner
gr.HTML("""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 24px 32px; border-radius: 12px; margin-bottom: 20px; box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);">
<div style="display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 16px;">
<div>
<h1 style="color: white; margin: 0 0 8px 0; font-size: 2em; font-weight: 700;">Lineage Graph Accelerator</h1>
<p style="color: rgba(255,255,255,0.9); margin: 0; font-size: 1.1em;">AI-powered data lineage extraction and visualization for modern data platforms</p>
</div>
<div style="display: flex; gap: 12px; flex-wrap: wrap;">
<a href="https://aamanlamba.com" target="_blank" style="background: rgba(255,255,255,0.2); color: white; padding: 8px 16px; border-radius: 6px; text-decoration: none; font-weight: 500; transition: background 0.2s;">By Aaman Lamba</a>
<a href="https://github.com/aamanlamba" target="_blank" style="background: rgba(255,255,255,0.2); color: white; padding: 8px 16px; border-radius: 6px; text-decoration: none; font-weight: 500;">GitHub</a>
</div>
</div>
<div style="margin-top: 16px; padding-top: 16px; border-top: 1px solid rgba(255,255,255,0.2);">
<span style="background: rgba(255,255,255,0.25); color: white; padding: 4px 10px; border-radius: 12px; font-size: 0.85em; margin-right: 8px;">Gradio 6</span>
<span style="background: rgba(255,255,255,0.25); color: white; padding: 4px 10px; border-radius: 12px; font-size: 0.85em; margin-right: 8px;">MCP Integration</span>
<span style="background: rgba(255,255,255,0.25); color: white; padding: 4px 10px; border-radius: 12px; font-size: 0.85em; margin-right: 8px;">Gemini AI</span>
<span style="background: rgba(255,255,255,0.25); color: white; padding: 4px 10px; border-radius: 12px; font-size: 0.85em;">5 Export Formats</span>
</div>
</div>
""")
gr.Markdown("""
### What You Can Do
| Feature | Description |
|---------|-------------|
| **Extract Lineage** | Parse metadata from dbt manifests, Airflow DAGs, SQL DDL, BigQuery, and custom JSON |
| **Visualize** | Generate interactive Mermaid diagrams with color-coded nodes and relationship labels |
| **Export** | Export to enterprise data catalogs: OpenLineage, Collibra, Purview, Alation, Atlas |
| **MCP Integration** | Connect to MCP servers for AI-powered metadata extraction |
| **AI Assistant** | Chat with Gemini to generate lineage from natural language descriptions |
### Quick Start
1. **Try the Demo**: Enable "Use MCP Server" and select "Local Demo MCP" to fetch sample lineage metadata
2. **Use Your Data**: Paste your dbt manifest, Airflow DAG, or custom JSON in the Text/File tab
3. **Load Samples**: Click "Load Sample" in the Demo Gallery to explore pre-built examples
4. **Export**: Use the Export section to generate catalog-ready JSON
---
""")
# MCP Server Configuration (collapsible)
with gr.Accordion("MCP Server Configuration", open=True):
gr.Markdown("""
**Connect to MCP Servers** to fetch metadata for lineage extraction.
Use the built-in **Local Demo MCP** for testing, or connect to external servers on HuggingFace.
""")
with gr.Row():
use_mcp_checkbox = gr.Checkbox(
label="Use MCP Server for Metadata",
value=False,
info="Enable to fetch lineage metadata from MCP server instead of local input"
)
mcp_preset = gr.Dropdown(
choices=[
("-- Select Preset --", ""),
("Local Demo MCP (Built-in)", "local_demo"),
("MCP Tools by abidlabs", "mcp_tools"),
("HuggingFace MCP by dylanebert", "huggingface_mcp"),
("Ragmint RAG Pipeline", "ragmint"),
("Web Search MCP", "web_search"),
],
label="Preset MCP Servers",
value="",
scale=2
)
with gr.Row():
mcp_server = gr.Textbox(
label="MCP Server URL",
placeholder="Select a preset or enter custom URL",
info="local://demo for built-in demo, or external MCP URL",
scale=3
)
mcp_query = gr.Textbox(
label="MCP Query (Optional)",
placeholder="e.g., 'ecommerce', 'ml pipeline', 'warehouse'",
info="Query to filter metadata from MCP server",
scale=2
)
with gr.Row():
mcp_api_key = gr.Textbox(
label="API Key (Optional)",
placeholder="API key if required",
type="password",
scale=2
)
test_btn = gr.Button("Test Connection", size="sm", scale=1)
mcp_description = gr.Textbox(label="Server Description", interactive=False, lines=2)
mcp_status = gr.Textbox(label="Connection Status", interactive=False)
# Wire up preset selection to update URL and description
mcp_preset.change(fn=get_preset_url, inputs=[mcp_preset], outputs=[mcp_server])
mcp_preset.change(fn=get_preset_description, inputs=[mcp_preset], outputs=[mcp_description])
test_btn.click(fn=test_mcp_connection, inputs=[mcp_server, mcp_api_key], outputs=[mcp_status])
# Main Tabs
with gr.Tabs():
# Tab 1: Text/File Input
with gr.Tab("Text/File Metadata", id="text"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input")
# Sample selector
with gr.Row():
sample_selector = gr.Dropdown(
choices=[
("Simple JSON", "simple"),
("dbt Manifest", "dbt"),
("Airflow DAG", "airflow"),
("SQL DDL", "sql"),
("Data Warehouse", "warehouse"),
("ETL Pipeline", "etl"),
("Complex Demo", "complex")
],
label="Load Sample Data",
value="simple"
)
load_sample_btn = gr.Button("Load Sample", size="sm")
metadata_input = gr.Textbox(
label="Metadata Content",
placeholder="Paste your metadata here (JSON, YAML, SQL, dbt manifest, Airflow DAG, etc.)",
lines=18
)
with gr.Row():
source_type = gr.Dropdown(
choices=["dbt Manifest", "Airflow DAG", "SQL DDL", "Data Warehouse", "ETL Pipeline", "Custom JSON", "Other"],
label="Source Type",
value="Custom JSON"
)
viz_format = gr.Dropdown(
choices=["Mermaid", "DOT/Graphviz", "Text"],
label="Visualization Format",
value="Mermaid"
)
extract_btn = gr.Button("Extract Lineage", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### Visualization")
output_viz = gr.HTML(label="Lineage Graph")
output_summary = gr.Textbox(label="Summary", lines=3)
# Export section
with gr.Accordion("Export to Data Catalog", open=False):
export_format = gr.Dropdown(
choices=EXPORT_FORMATS,
label="Export Format",
value="OpenLineage"
)
export_btn = gr.Button("Generate Export", variant="secondary")
export_output = gr.Code(label="Export Content", language="json", lines=10)
export_status = gr.Textbox(label="Export Status", interactive=False)
# Event handlers
load_sample_btn.click(
fn=load_sample,
inputs=[sample_selector],
outputs=[metadata_input]
)
extract_btn.click(
fn=extract_lineage_from_text,
inputs=[metadata_input, source_type, viz_format, use_mcp_checkbox, mcp_server, mcp_query],
outputs=[output_viz, output_summary]
)
export_btn.click(
fn=export_lineage,
inputs=[metadata_input, source_type, export_format],
outputs=[export_output, export_status]
)
# Tab 2: BigQuery
with gr.Tab("BigQuery", id="bigquery"):
with gr.Row():
with gr.Column():
bq_project = gr.Textbox(
label="Project ID",
placeholder="your-gcp-project-id"
)
bq_query = gr.Textbox(
label="Metadata Query",
placeholder="SELECT * FROM `project.dataset.INFORMATION_SCHEMA.TABLES`",
lines=10
)
load_bq_sample = gr.Button("Load Sample Query", size="sm")
bq_creds = gr.Textbox(
label="Service Account JSON (optional)",
type="password"
)
bq_viz_format = gr.Dropdown(
choices=["Mermaid", "DOT/Graphviz", "Text"],
label="Visualization Format",
value="Mermaid"
)
bq_extract_btn = gr.Button("Extract Lineage", variant="primary")
with gr.Column():
bq_output_viz = gr.HTML(label="Lineage Graph")
bq_output_summary = gr.Textbox(label="Summary", lines=3)
load_bq_sample.click(
fn=lambda: load_sample("bigquery"),
outputs=[bq_query]
)
bq_extract_btn.click(
fn=extract_lineage_from_bigquery,
inputs=[bq_project, bq_query, bq_creds, bq_viz_format],
outputs=[bq_output_viz, bq_output_summary]
)
# Tab 3: URL/API
with gr.Tab("URL/API", id="url"):
with gr.Row():
with gr.Column():
url_input = gr.Textbox(
label="Metadata URL",
placeholder="https://api.example.com/metadata"
)
load_url_sample = gr.Button("Load Sample API Metadata", size="sm")
url_viz_format = gr.Dropdown(
choices=["Mermaid", "DOT/Graphviz", "Text"],
label="Visualization Format",
value="Mermaid"
)
url_extract_btn = gr.Button("Extract Lineage", variant="primary")
with gr.Column():
url_output_viz = gr.HTML(label="Lineage Graph")
url_output_summary = gr.Textbox(label="Summary", lines=3)
load_url_sample.click(
fn=lambda: load_sample("api"),
outputs=[url_input]
)
url_extract_btn.click(
fn=extract_lineage_from_url,
inputs=[url_input, url_viz_format],
outputs=[url_output_viz, url_output_summary]
)
# Tab 4: Demo Gallery
with gr.Tab("Demo Gallery", id="gallery"):
gr.Markdown("""
## Sample Lineage Visualizations
Click any example below to see the lineage visualization.
""")
with gr.Row():
demo_simple = gr.Button("E-Commerce (Simple)")
demo_dbt = gr.Button("dbt Project")
demo_airflow = gr.Button("Airflow DAG")
with gr.Row():
demo_warehouse = gr.Button("Data Warehouse")
demo_etl = gr.Button("ETL Pipeline")
demo_complex = gr.Button("Complex Platform")
demo_viz = gr.HTML(label="Demo Visualization")
demo_summary = gr.Textbox(label="Description", lines=2)
# Demo handlers
for btn, sample_type in [(demo_simple, "simple"), (demo_dbt, "dbt"),
(demo_airflow, "airflow"), (demo_warehouse, "warehouse"),
(demo_etl, "etl"), (demo_complex, "complex")]:
btn.click(
fn=lambda st=sample_type: extract_lineage_from_text(
load_sample(st),
st.replace("_", " ").title(),
"Mermaid"
),
outputs=[demo_viz, demo_summary]
)
# Tab 5: AI Chatbot (Gemini)
with gr.Tab("AI Assistant", id="chatbot"):
gr.Markdown("""
## Lineage AI Assistant (Powered by Google Gemini)
Ask questions about data lineage, describe your data pipeline in natural language,
and get JSON metadata you can use to visualize lineage.
**Examples:**
- "I have a PostgreSQL database that feeds into a Spark ETL job, which outputs to a Snowflake warehouse"
- "Generate lineage for a dbt project with staging, intermediate, and mart layers"
- "What's the best way to document column-level lineage?"
""")
with gr.Row():
with gr.Column(scale=2):
gemini_api_key = gr.Textbox(
label="Google Gemini API Key",
placeholder="Enter your Gemini API key (get one at makersuite.google.com)",
type="password",
info="Your API key is not stored and only used for this session"
)
chatbot_display = gr.Chatbot(
label="Chat with Lineage AI",
height=400
)
with gr.Row():
chat_input = gr.Textbox(
label="Your message",
placeholder="Describe your data pipeline or ask about lineage...",
lines=2,
scale=4
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Accordion("Generated JSON (if any)", open=False):
generated_json = gr.Code(
label="Extracted JSON",
language="json",
lines=10
)
use_json_btn = gr.Button("Use This JSON in Lineage Tool", size="sm")
json_status = gr.Textbox(label="Status", interactive=False)
# Chat handlers
chat_state = gr.State([])
def handle_chat(message, history, api_key):
if not message.strip():
return history, "", history
new_history, extracted = chat_with_gemini(message, history, api_key)
return new_history, extracted, new_history
send_btn.click(
fn=handle_chat,
inputs=[chat_input, chat_state, gemini_api_key],
outputs=[chatbot_display, generated_json, chat_state]
).then(
fn=lambda: "",
outputs=[chat_input]
)
chat_input.submit(
fn=handle_chat,
inputs=[chat_input, chat_state, gemini_api_key],
outputs=[chatbot_display, generated_json, chat_state]
).then(
fn=lambda: "",
outputs=[chat_input]
)
use_json_btn.click(
fn=use_generated_json,
inputs=[generated_json],
outputs=[metadata_input, source_type, json_status]
)
# Footer
gr.Markdown("""
---
### Export Formats Supported
| Format | Description | Use Case |
|--------|-------------|----------|
| **OpenLineage** | Open standard for lineage | Universal compatibility |
| **Collibra** | Collibra Data Intelligence | Enterprise data governance |
| **Purview** | Microsoft Purview | Azure ecosystem |
| **Alation** | Alation Data Catalog | Self-service analytics |
| **Atlas** | Apache Atlas | Open-source governance |
---
### 🎥 Watch the Demo
See all features in action: [YouTube Demo Video (2:30)](https://youtu.be/U4Dfc7txa_0)
---
Built with Gradio for the **Gradio Agents & MCP Hackathon - Winter 2025** by [Aaman Lamba](https://aamanlamba.com)
[GitHub](https://github.com/aamanlamba/lineage-graph-accelerator) | [Documentation](https://huggingface.co/spaces/aamanlamba/Lineage-graph-accelerator/blob/main/USER_GUIDE.md) | [HuggingFace Space](https://huggingface.co/spaces/aamanlamba/Lineage-graph-accelerator)
""")
# Launch
if __name__ == "__main__":
demo.launch(ssr_mode=False)
|