File size: 4,153 Bytes
60ac2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python3
"""
Lineage Graph Extractor - Integration Example

This script demonstrates how to use the Lineage Graph Extractor agent
programmatically with the Anthropic API.

Usage:
    python integration_example.py
"""

import os
from anthropic import Anthropic
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

def load_agent_config():
    """Load the agent configuration from memories/agent.md"""
    config_path = os.path.join(os.path.dirname(__file__), "memories", "agent.md")
    
    with open(config_path, "r") as f:
        return f.read()

def extract_lineage(client, system_prompt, user_message):
    """
    Send a lineage extraction request to the agent.
    
    Args:
        client: Anthropic client instance
        system_prompt: Agent system prompt
        user_message: User's lineage extraction request
    
    Returns:
        Agent's response text
    """
    response = client.messages.create(
        model="claude-3-5-sonnet-20241022",
        max_tokens=4000,
        system=system_prompt,
        messages=[{
            "role": "user",
            "content": user_message
        }]
    )
    
    return response.content[0].text

def main():
    """Main function demonstrating agent usage"""
    
    # Initialize Anthropic client
    api_key = os.getenv("ANTHROPIC_API_KEY")
    if not api_key:
        print("Error: ANTHROPIC_API_KEY not found in environment variables.")
        print("Please set it in your .env file.")
        return
    
    client = Anthropic(api_key=api_key)
    
    # Load agent configuration
    print("Loading agent configuration...")
    system_prompt = load_agent_config()
    print("✓ Agent configuration loaded\n")
    
    # Example 1: Simple greeting to test agent
    print("=" * 60)
    print("Example 1: Testing agent connection")
    print("=" * 60)
    response = extract_lineage(
        client,
        system_prompt,
        "Hello! What can you help me with?"
    )
    print(response)
    print()
    
    # Example 2: Extract lineage from sample metadata
    print("=" * 60)
    print("Example 2: Extract lineage from sample metadata")
    print("=" * 60)
    
    sample_metadata = """
    {
        "tables": [
            {
                "name": "raw_orders",
                "type": "source",
                "description": "Raw order data from API"
            },
            {
                "name": "raw_customers",
                "type": "source",
                "description": "Raw customer data from database"
            },
            {
                "name": "stg_orders",
                "type": "staging",
                "description": "Cleaned and standardized orders",
                "depends_on": ["raw_orders"]
            },
            {
                "name": "stg_customers",
                "type": "staging",
                "description": "Cleaned and standardized customers",
                "depends_on": ["raw_customers"]
            },
            {
                "name": "fct_orders",
                "type": "fact",
                "description": "Order facts with customer data",
                "depends_on": ["stg_orders", "stg_customers"]
            }
        ]
    }
    """
    
    response = extract_lineage(
        client,
        system_prompt,
        f"Extract lineage from this metadata and create a Mermaid diagram:\n\n{sample_metadata}"
    )
    print(response)
    print()
    
    # Example 3: BigQuery extraction (requires credentials)
    if os.getenv("GOOGLE_CLOUD_PROJECT"):
        print("=" * 60)
        print("Example 3: BigQuery lineage extraction")
        print("=" * 60)
        
        project_id = os.getenv("GOOGLE_CLOUD_PROJECT")
        response = extract_lineage(
            client,
            system_prompt,
            f"Extract lineage from BigQuery project: {project_id}, dataset: analytics"
        )
        print(response)
    else:
        print("Skipping BigQuery example (GOOGLE_CLOUD_PROJECT not set)")
    
    print("\n" + "=" * 60)
    print("Examples complete!")
    print("=" * 60)

if __name__ == "__main__":
    main()