Spaces:
Sleeping
Sleeping
| # Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Executes CTL benchmarks and accuracy tests.""" | |
| # pylint: disable=line-too-long,g-bad-import-order | |
| from __future__ import print_function | |
| import os | |
| import time | |
| from absl import flags | |
| import tensorflow as tf | |
| from official.benchmark import owner_utils | |
| from official.vision.image_classification.resnet import common | |
| from official.vision.image_classification.resnet import resnet_ctl_imagenet_main | |
| from official.benchmark.perfzero_benchmark import PerfZeroBenchmark | |
| from official.benchmark import benchmark_wrappers | |
| from official.utils.flags import core as flags_core | |
| MIN_TOP_1_ACCURACY = 0.76 | |
| MAX_TOP_1_ACCURACY = 0.77 | |
| FLAGS = flags.FLAGS | |
| class CtlBenchmark(PerfZeroBenchmark): | |
| """Base benchmark class with methods to simplify testing.""" | |
| def __init__(self, output_dir=None, default_flags=None, flag_methods=None): | |
| self.default_flags = default_flags or {} | |
| self.flag_methods = flag_methods or {} | |
| super(CtlBenchmark, self).__init__( | |
| output_dir=output_dir, | |
| default_flags=self.default_flags, | |
| flag_methods=self.flag_methods) | |
| def _report_benchmark(self, | |
| stats, | |
| wall_time_sec, | |
| top_1_max=None, | |
| top_1_min=None, | |
| total_batch_size=None, | |
| log_steps=None, | |
| warmup=1, | |
| start_time_sec=None): | |
| """Report benchmark results by writing to local protobuf file. | |
| Args: | |
| stats: dict returned from keras models with known entries. | |
| wall_time_sec: the during of the benchmark execution in seconds | |
| top_1_max: highest passing level for top_1 accuracy. | |
| top_1_min: lowest passing level for top_1 accuracy. | |
| total_batch_size: Global batch-size. | |
| log_steps: How often the log was created for stats['step_timestamp_log']. | |
| warmup: number of entries in stats['step_timestamp_log'] to ignore. | |
| start_time_sec: the start time of the program in seconds since epoch. | |
| """ | |
| metrics = [] | |
| if 'eval_acc' in stats: | |
| metrics.append({ | |
| 'name': 'accuracy_top_1', | |
| 'value': stats['eval_acc'], | |
| 'min_value': top_1_min, | |
| 'max_value': top_1_max | |
| }) | |
| metrics.append({'name': 'eval_loss', 'value': stats['eval_loss']}) | |
| metrics.append({ | |
| 'name': 'top_1_train_accuracy', | |
| 'value': stats['train_acc'] | |
| }) | |
| metrics.append({'name': 'train_loss', 'value': stats['train_loss']}) | |
| if (warmup and 'step_timestamp_log' in stats and | |
| len(stats['step_timestamp_log']) > warmup + 1): | |
| # first entry in the time_log is start of step 0. The rest of the | |
| # entries are the end of each step recorded | |
| time_log = stats['step_timestamp_log'] | |
| steps_elapsed = time_log[-1].batch_index - time_log[warmup].batch_index | |
| time_elapsed = time_log[-1].timestamp - time_log[warmup].timestamp | |
| examples_per_sec = total_batch_size * (steps_elapsed / time_elapsed) | |
| metrics.append({'name': 'exp_per_second', 'value': examples_per_sec}) | |
| if 'avg_exp_per_second' in stats: | |
| metrics.append({ | |
| 'name': 'avg_exp_per_second', | |
| 'value': stats['avg_exp_per_second'] | |
| }) | |
| if start_time_sec and 'step_timestamp_log' in stats: | |
| time_log = stats['step_timestamp_log'] | |
| # time_log[0] is recorded at the beginning of the first step. | |
| startup_time = time_log[0].timestamp - start_time_sec | |
| metrics.append({'name': 'startup_time', 'value': startup_time}) | |
| flags_str = flags_core.get_nondefault_flags_as_str() | |
| self.report_benchmark( | |
| iters=-1, | |
| wall_time=wall_time_sec, | |
| metrics=metrics, | |
| extras={'flags': flags_str}) | |
| class Resnet50CtlAccuracy(CtlBenchmark): | |
| """Benchmark accuracy tests for ResNet50 in CTL.""" | |
| def __init__(self, output_dir=None, root_data_dir=None, **kwargs): | |
| """A benchmark class. | |
| Args: | |
| output_dir: directory where to output e.g. log files | |
| root_data_dir: directory under which to look for dataset | |
| **kwargs: arbitrary named arguments. This is needed to make the | |
| constructor forward compatible in case PerfZero provides more named | |
| arguments before updating the constructor. | |
| """ | |
| flag_methods = [common.define_keras_flags] | |
| self.data_dir = os.path.join(root_data_dir, 'imagenet') | |
| super(Resnet50CtlAccuracy, self).__init__( | |
| output_dir=output_dir, flag_methods=flag_methods) | |
| def benchmark_8_gpu(self): | |
| """Test Keras model with eager, dist_strat and 8 GPUs.""" | |
| self._setup() | |
| FLAGS.num_gpus = 8 | |
| FLAGS.data_dir = self.data_dir | |
| FLAGS.batch_size = 128 * 8 | |
| FLAGS.train_epochs = 90 | |
| FLAGS.epochs_between_evals = 10 | |
| FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu') | |
| FLAGS.dtype = 'fp32' | |
| self._run_and_report_benchmark() | |
| def benchmark_8_gpu_fp16(self): | |
| """Test Keras model with eager, 8 GPUs with tf.keras mixed precision.""" | |
| self._setup() | |
| FLAGS.num_gpus = 8 | |
| FLAGS.data_dir = self.data_dir | |
| FLAGS.batch_size = 256 * 8 | |
| FLAGS.train_epochs = 90 | |
| FLAGS.epochs_between_evals = 10 | |
| FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16') | |
| FLAGS.dtype = 'fp16' | |
| self._run_and_report_benchmark() | |
| def benchmark_8_gpu_amp(self): | |
| """Test Keras model with 8 GPUs and mixed precision via graph rewrite.""" | |
| self._setup() | |
| FLAGS.num_gpus = 8 | |
| FLAGS.data_dir = self.data_dir | |
| FLAGS.batch_size = 256 * 8 | |
| FLAGS.train_epochs = 90 | |
| FLAGS.epochs_between_evals = 10 | |
| FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp') | |
| FLAGS.dtype = 'fp16' | |
| FLAGS.fp16_implementation = 'graph_rewrite' | |
| self._run_and_report_benchmark() | |
| def _run_and_report_benchmark(self): | |
| start_time_sec = time.time() | |
| stats = resnet_ctl_imagenet_main.run(flags.FLAGS) | |
| wall_time_sec = time.time() - start_time_sec | |
| super(Resnet50CtlAccuracy, self)._report_benchmark( | |
| stats, | |
| wall_time_sec, | |
| top_1_min=MIN_TOP_1_ACCURACY, | |
| top_1_max=MAX_TOP_1_ACCURACY, | |
| total_batch_size=FLAGS.batch_size, | |
| log_steps=100, | |
| start_time_sec=start_time_sec) | |
| class Resnet50CtlBenchmarkBase(CtlBenchmark): | |
| """Resnet50 benchmarks.""" | |
| def __init__(self, output_dir=None, default_flags=None): | |
| flag_methods = [common.define_keras_flags] | |
| super(Resnet50CtlBenchmarkBase, self).__init__( | |
| output_dir=output_dir, | |
| flag_methods=flag_methods, | |
| default_flags=default_flags) | |
| def _run_and_report_benchmark(self): | |
| start_time_sec = time.time() | |
| stats = resnet_ctl_imagenet_main.run(FLAGS) | |
| wall_time_sec = time.time() - start_time_sec | |
| # Warmup means the number of logged step time entries that are excluded in | |
| # performance report. Default to exclude 1 FLAGS.log_steps time. | |
| super(Resnet50CtlBenchmarkBase, self)._report_benchmark( | |
| stats, | |
| wall_time_sec, | |
| total_batch_size=FLAGS.batch_size, | |
| log_steps=FLAGS.log_steps, | |
| warmup=1, | |
| start_time_sec=start_time_sec) | |
| def benchmark_1_gpu_no_dist_strat(self): | |
| """Test Keras model with 1 GPU, no distribution strategy.""" | |
| self._setup() | |
| FLAGS.num_gpus = 1 | |
| FLAGS.distribution_strategy = 'off' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat') | |
| FLAGS.batch_size = 128 | |
| self._run_and_report_benchmark() | |
| def benchmark_1_gpu(self): | |
| """Test Keras model with 1 GPU.""" | |
| self._setup() | |
| FLAGS.num_gpus = 1 | |
| FLAGS.distribution_strategy = 'one_device' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu') | |
| FLAGS.batch_size = 128 | |
| self._run_and_report_benchmark() | |
| def benchmark_1_gpu_fp16(self): | |
| """Test Keras model with 1 GPU with tf.keras mixed precision.""" | |
| self._setup() | |
| FLAGS.num_gpus = 1 | |
| FLAGS.distribution_strategy = 'one_device' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16') | |
| FLAGS.batch_size = 256 | |
| FLAGS.dtype = 'fp16' | |
| self._run_and_report_benchmark() | |
| def benchmark_1_gpu_amp(self): | |
| """Test Keras model with 1 GPU with automatic mixed precision.""" | |
| self._setup() | |
| FLAGS.num_gpus = 1 | |
| FLAGS.distribution_strategy = 'one_device' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp') | |
| FLAGS.batch_size = 256 | |
| FLAGS.dtype = 'fp16' | |
| FLAGS.fp16_implementation = 'graph_rewrite' | |
| self._run_and_report_benchmark() | |
| def benchmark_xla_1_gpu_amp(self): | |
| """Test Keras model with XLA and 1 GPU with automatic mixed precision.""" | |
| self._setup() | |
| FLAGS.num_gpus = 1 | |
| FLAGS.distribution_strategy = 'one_device' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp') | |
| FLAGS.batch_size = 256 | |
| FLAGS.dtype = 'fp16' | |
| FLAGS.fp16_implementation = 'graph_rewrite' | |
| FLAGS.enable_xla = True | |
| self._run_and_report_benchmark() | |
| def benchmark_1_gpu_eager(self): | |
| """Test Keras model with 1 GPU in pure eager mode.""" | |
| self._setup() | |
| FLAGS.num_gpus = 1 | |
| FLAGS.distribution_strategy = 'one_device' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_eager') | |
| FLAGS.batch_size = 120 | |
| FLAGS.use_tf_function = False | |
| FLAGS.use_tf_while_loop = False | |
| FLAGS.single_l2_loss_op = True | |
| self._run_and_report_benchmark() | |
| def benchmark_1_gpu_fp16_eager(self): | |
| """Test Keras model with 1 GPU with fp16 and pure eager mode.""" | |
| self._setup() | |
| FLAGS.num_gpus = 1 | |
| FLAGS.distribution_strategy = 'one_device' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_eager') | |
| FLAGS.batch_size = 240 | |
| FLAGS.dtype = 'fp16' | |
| FLAGS.use_tf_function = False | |
| FLAGS.use_tf_while_loop = False | |
| FLAGS.single_l2_loss_op = True | |
| self._run_and_report_benchmark() | |
| def benchmark_8_gpu(self): | |
| """Test Keras model with 8 GPUs.""" | |
| self._setup() | |
| FLAGS.num_gpus = 8 | |
| FLAGS.distribution_strategy = 'mirrored' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu') | |
| FLAGS.batch_size = 128 * 8 # 8 GPUs | |
| self._run_and_report_benchmark() | |
| def benchmark_8_gpu_fp16(self): | |
| """Test Keras model with 8 GPUs with tf.keras mixed precision.""" | |
| self._setup() | |
| FLAGS.num_gpus = 8 | |
| FLAGS.distribution_strategy = 'mirrored' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16') | |
| FLAGS.batch_size = 256 * 8 # 8 GPUs | |
| FLAGS.dtype = 'fp16' | |
| self._run_and_report_benchmark() | |
| def benchmark_8_gpu_eager(self): | |
| """Test Keras model with 8 GPUs, eager, fp32.""" | |
| self._setup() | |
| FLAGS.num_gpus = 8 | |
| FLAGS.use_tf_function = False | |
| FLAGS.use_tf_while_loop = False | |
| FLAGS.distribution_strategy = 'mirrored' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager') | |
| FLAGS.batch_size = 128 | |
| self._run_and_report_benchmark() | |
| def benchmark_8_gpu_eager_fp16(self): | |
| """Test Keras model with 8 GPUs, eager, fp16.""" | |
| self._setup() | |
| FLAGS.num_gpus = 8 | |
| FLAGS.dtype = 'fp16' | |
| FLAGS.use_tf_function = False | |
| FLAGS.use_tf_while_loop = False | |
| FLAGS.distribution_strategy = 'mirrored' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager_fp16') | |
| FLAGS.batch_size = 128 | |
| self._run_and_report_benchmark() | |
| def benchmark_8_gpu_amp(self): | |
| """Test Keras model with 8 GPUs with automatic mixed precision.""" | |
| self._setup() | |
| FLAGS.num_gpus = 8 | |
| FLAGS.distribution_strategy = 'mirrored' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp') | |
| FLAGS.batch_size = 256 * 8 # 8 GPUs | |
| FLAGS.dtype = 'fp16' | |
| FLAGS.fp16_implementation = 'graph_rewrite' | |
| self._run_and_report_benchmark() | |
| def benchmark_xla_8_gpu_amp(self): | |
| """Test Keras model with XLA and 8 GPUs with automatic mixed precision.""" | |
| self._setup() | |
| FLAGS.num_gpus = 8 | |
| FLAGS.distribution_strategy = 'mirrored' | |
| FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp') | |
| FLAGS.batch_size = 256 * 8 # 8 GPUs | |
| FLAGS.dtype = 'fp16' | |
| FLAGS.fp16_implementation = 'graph_rewrite' | |
| FLAGS.enable_xla = True | |
| self._run_and_report_benchmark() | |
| def _set_df_common(self): | |
| FLAGS.steps_per_loop = 500 | |
| FLAGS.train_epochs = 2 | |
| FLAGS.train_steps = None | |
| FLAGS.skip_eval = True | |
| FLAGS.enable_eager = True | |
| FLAGS.enable_tensorboard = False | |
| FLAGS.distribution_strategy = 'tpu' | |
| FLAGS.report_accuracy_metrics = False | |
| FLAGS.log_steps = 50 | |
| FLAGS.single_l2_loss_op = True | |
| FLAGS.use_tf_function = True | |
| FLAGS.enable_checkpoint_and_export = False | |
| def benchmark_2x2_tpu_bf16(self): | |
| self._setup() | |
| self._set_df_common() | |
| FLAGS.batch_size = 1024 | |
| FLAGS.dtype = 'bf16' | |
| self._run_and_report_benchmark() | |
| def benchmark_4x4_tpu_bf16(self): | |
| self._setup() | |
| self._set_df_common() | |
| FLAGS.batch_size = 4096 | |
| FLAGS.dtype = 'bf16' | |
| self._run_and_report_benchmark() | |
| def benchmark_4x4_tpu_bf16_mlir(self): | |
| """Run resnet model on 4x4 with the MLIR Bridge enabled.""" | |
| self._setup() | |
| self._set_df_common() | |
| FLAGS.batch_size = 4096 | |
| FLAGS.dtype = 'bf16' | |
| tf.config.experimental.enable_mlir_bridge() | |
| self._run_and_report_benchmark() | |
| def benchmark_8x16_tpu_bf16(self): | |
| self._setup() | |
| self._set_df_common() | |
| FLAGS.batch_size = 8192 | |
| FLAGS.dtype = 'bf16' | |
| self._run_and_report_benchmark() | |
| def fill_report_object(self, stats): | |
| super(Resnet50CtlBenchmarkBase, self).fill_report_object( | |
| stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps) | |
| class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase): | |
| """Resnet50 synthetic benchmark tests.""" | |
| def __init__(self, output_dir=None, root_data_dir=None, **kwargs): | |
| def_flags = {} | |
| def_flags['skip_eval'] = True | |
| def_flags['use_synthetic_data'] = True | |
| def_flags['train_steps'] = 110 | |
| def_flags['steps_per_loop'] = 20 | |
| def_flags['log_steps'] = 10 | |
| super(Resnet50CtlBenchmarkSynth, self).__init__( | |
| output_dir=output_dir, default_flags=def_flags) | |
| class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase): | |
| """Resnet50 real data benchmark tests.""" | |
| def __init__(self, output_dir=None, root_data_dir=None, **kwargs): | |
| def_flags = {} | |
| def_flags['skip_eval'] = True | |
| def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet') | |
| def_flags['train_steps'] = 110 | |
| def_flags['steps_per_loop'] = 20 | |
| def_flags['log_steps'] = 10 | |
| super(Resnet50CtlBenchmarkReal, self).__init__( | |
| output_dir=output_dir, default_flags=def_flags) | |
| if __name__ == '__main__': | |
| tf.test.main() | |