Spaces:
Sleeping
Sleeping
| # Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """A script to export the BERT core model as a TF-Hub SavedModel.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| # from __future__ import google_type_annotations | |
| from __future__ import print_function | |
| from absl import app | |
| from absl import flags | |
| from absl import logging | |
| import tensorflow as tf | |
| from typing import Text | |
| from official.nlp.bert import bert_models | |
| from official.nlp.bert import configs | |
| FLAGS = flags.FLAGS | |
| flags.DEFINE_string("bert_config_file", None, | |
| "Bert configuration file to define core bert layers.") | |
| flags.DEFINE_string("model_checkpoint_path", None, | |
| "File path to TF model checkpoint.") | |
| flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.") | |
| flags.DEFINE_string("vocab_file", None, | |
| "The vocabulary file that the BERT model was trained on.") | |
| flags.DEFINE_bool("do_lower_case", None, "Whether to lowercase. If None, " | |
| "do_lower_case will be enabled if 'uncased' appears in the " | |
| "name of --vocab_file") | |
| def create_bert_model(bert_config: configs.BertConfig) -> tf.keras.Model: | |
| """Creates a BERT keras core model from BERT configuration. | |
| Args: | |
| bert_config: A `BertConfig` to create the core model. | |
| Returns: | |
| A keras model. | |
| """ | |
| # Adds input layers just as placeholders. | |
| input_word_ids = tf.keras.layers.Input( | |
| shape=(None,), dtype=tf.int32, name="input_word_ids") | |
| input_mask = tf.keras.layers.Input( | |
| shape=(None,), dtype=tf.int32, name="input_mask") | |
| input_type_ids = tf.keras.layers.Input( | |
| shape=(None,), dtype=tf.int32, name="input_type_ids") | |
| transformer_encoder = bert_models.get_transformer_encoder( | |
| bert_config, sequence_length=None) | |
| sequence_output, pooled_output = transformer_encoder( | |
| [input_word_ids, input_mask, input_type_ids]) | |
| # To keep consistent with legacy hub modules, the outputs are | |
| # "pooled_output" and "sequence_output". | |
| return tf.keras.Model( | |
| inputs=[input_word_ids, input_mask, input_type_ids], | |
| outputs=[pooled_output, sequence_output]), transformer_encoder | |
| def export_bert_tfhub(bert_config: configs.BertConfig, | |
| model_checkpoint_path: Text, hub_destination: Text, | |
| vocab_file: Text, do_lower_case: bool = None): | |
| """Restores a tf.keras.Model and saves for TF-Hub.""" | |
| # If do_lower_case is not explicit, default to checking whether "uncased" is | |
| # in the vocab file name | |
| if do_lower_case is None: | |
| do_lower_case = "uncased" in vocab_file | |
| logging.info("Using do_lower_case=%s based on name of vocab_file=%s", | |
| do_lower_case, vocab_file) | |
| core_model, encoder = create_bert_model(bert_config) | |
| checkpoint = tf.train.Checkpoint(model=encoder) | |
| checkpoint.restore(model_checkpoint_path).assert_consumed() | |
| core_model.vocab_file = tf.saved_model.Asset(vocab_file) | |
| core_model.do_lower_case = tf.Variable(do_lower_case, trainable=False) | |
| core_model.save(hub_destination, include_optimizer=False, save_format="tf") | |
| def main(_): | |
| bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file) | |
| export_bert_tfhub(bert_config, FLAGS.model_checkpoint_path, FLAGS.export_path, | |
| FLAGS.vocab_file, FLAGS.do_lower_case) | |
| if __name__ == "__main__": | |
| app.run(main) | |